skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seasonal Asymmetries in the Lag between Insolation and Surface Temperature
We analyze the temporal structure of the climatological seasonal cycle in surface air temperature across the globe. We find that, over large regions of Earth, the seasonal cycle of surface temperature departs from an annual harmonic: the duration of fall and spring differ by as much as 2 months. We characterize this asymmetry by the metric ASYM, defined as the phase lag of the seasonal maximum temperature relative to the summer solstice minus the phase lag of the seasonal minimum temperature relative to winter solstice. We present a global analysis of ASYM from weather station data and atmospheric reanalysis and find that ASYM is well represented in the reanalysis. ASYM generally features positive values over land and negative values over the ocean, indicating that spring has a longer duration over the land domain whereas fall has a longer duration over the ocean. However, ASYM also features more positive values over North America compared to Europe and negative values in the polar regions over ice sheets and sea ice. Understanding the root cause of the climatological ASYM will potentially further our understanding of controls on the seasonal cycle of temperature and its future/past changes. We explore several candidate mechanisms to explain the spatial structure of ASYM including 1) modification of the seasonal cycle of surface solar radiation by the seasonal evolution of cloud thickness, 2) differences in the seasonal cycle of the atmospheric boundary layer depth over ocean and over land, and 3) temperature advection by the seasonally evolving atmospheric circulation.  more » « less
Award ID(s):
1643436
PAR ID:
10143530
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
10
ISSN:
0894-8755
Page Range / eLocation ID:
p. 3921-3945
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The global seasonal cycle of energy in Earth’s climate system is quantified using observations and reanalyses. After removing long-term trends, net energy entering and exiting the climate system at the top of the atmosphere (TOA) should agree with the sum of energy entering and exiting the ocean, atmosphere, land, and ice over the course of an average year. Achieving such a balanced budget with observations has been challenging. Disagreements have been attributed previously to sparse observations in the high-latitude oceans. However, limiting the local vertical integration of new global ocean heat content estimates to the depth to which seasonal heat energy is stored, rather than integrating to 2000 m everywhere as done previously, allows closure of the global seasonal energy budget within statistical uncertainties. The seasonal cycle of energy storage is largest in the ocean, peaking in April because ocean area is largest in the Southern Hemisphere and the ocean’s thermal inertia causes a lag with respect to the austral summer solstice. Seasonal cycles in energy storage in the atmosphere and land are smaller, but peak in July and September, respectively, because there is more land in the Northern Hemisphere, and the land has more thermal inertia than the atmosphere. Global seasonal energy storage by ice is small, so the atmosphere and land partially offset ocean energy storage in the global integral, with their sum matching time-integrated net global TOA energy fluxes over the seasonal cycle within uncertainties, and both peaking in April. 
    more » « less
  2. Abstract Subseasonal-to-seasonal (S2S) precipitation prediction in boreal spring and summer months, which contains a significant number of high-signal events, is scientifically challenging and prediction skill has remained poor for years. Tibetan Plateau (TP) spring observed surface ­temperatures show a lag correlation with summer precipitation in several remote regions, but current global land–atmosphere coupled models are unable to represent this behavior due to significant errors in producing observed TP surface temperatures. To address these issues, the Global Energy and Water Exchanges (GEWEX) program launched the “Impact of Initialized Land Temperature and Snowpack on Subseasonal-to-Seasonal Prediction” (LS4P) initiative as a community effort to test the impact of land temperature in high-mountain regions on S2S prediction by climate models: more than 40 institutions worldwide are participating in this project. After using an innovative new land state initialization approach based on observed surface 2-m temperature over the TP in the LS4P experiment, results from a multimodel ensemble provide evidence for a causal relationship in the observed association between the Plateau spring land temperature and summer precipitation over several regions across the world through teleconnections. The influence is underscored by an out-of-phase oscillation between the TP and Rocky Mountain surface temperatures. This study reveals for the first time that high-mountain land temperature could be a substantial source of S2S precipitation predictability, and its effect is probably as large as ocean surface temperature over global “hotspot” regions identified here; the ensemble means in some “hotspots” produce more than 40% of the observed anomalies. This LS4P approach should stimulate more follow-on explorations. 
    more » « less
  3. The Arctic Ocean has experienced significant sea ice loss over recent decades, shifting towards a thinner and more mobile seasonal ice regime. However, the impacts of these transformations on the upper ocean dynamics of the biologically productive Pacific Arctic continental shelves remain underexplored. Here, we quantified the summer upper mixed layer depth and analyzed its interannual to decadal evolution with sea ice and atmospheric forcing, using hydrographic observations and model reanalysis from 1996 to 2021. Before 2006, a shoaling summer mixed layer was associated with sea ice loss and surface warming. After 2007, however, the upper mixed layer reversed to a generally deepening trend due to markedly lengthened open water duration, enhanced wind-induced mixing, and reduced ice meltwater input. Our findings reveal a shift in the primary drivers of upper ocean dynamics, with surface buoyancy flux dominant initially, followed by a shift to wind forcing despite continued sea ice decline. These changes in upper ocean structure and forcing mechanisms may have substantial implications for the marine ecosystem, potentially contributing to unusual fall phytoplankton blooms and intensified ocean acidification observed in the past decade 
    more » « less
  4. Atmospheric model systems, such as those used for weather forecast and reanalysis production, often have significant and systematic errors in their representation of the Arctic surface energy budget and its components. The newly available observation data of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition (2019/2020) enable a range of model analyses and validation in order to advance our understanding of potential model deficiencies. In the present study, we analyze deficiencies in the surface radiative energy budget over Arctic sea ice in the ERA5 global atmospheric reanalysis by comparing against the winter MOSAiC campaign data, as well as, a pan-Arctic level-2 MODIS ice surface temperature remote sensing product. We find that ERA5 can simulate the timing of radiatively clear periods, though it is not able to distinguish the two observed radiative Arctic winter states, radiatively clear and opaquely cloudy, in the distribution of the net surface radiative budget. The ERA5 surface temperature over Arctic sea ice has a conditional error with a positive bias in radiatively clear conditions and a negative bias in opaquely cloudy conditions. The mean surface temperature error is 4°C for radiatively clear situations at MOSAiC and up to 15°C in some parts of the Arctic. The spatial variability of the surface temperature, given by 4 observation sites at MOSAiC, is not captured by ERA5 due to its spatial resolution but represented in the level-2 satellite product. The sensitivity analysis of possible error sources, using satellite products of snow depth and sea ice thickness, shows that the positive surface temperature errors during radiatively clear events are, to a large extent, caused by insufficient sea ice thickness and snow depth representation in the reanalysis system. A positive bias characterizes regions with ice thickness greater than 1.5 m, while the negative bias for thinner ice is partly compensated by the effect of snow. 
    more » « less
  5. Abstract A thermodynamic energy budget analysis is applied to the lowest model level of the ERA5 dataset to investigate the mechanisms that drive the growth and decay of extreme positive surface air temperature (SAT) events. Regional and seasonal variation of the mechanisms are investigated. For each grid point on Earth’s surface, a separate composite analysis is performed for extreme SAT events, which are days when temperature anomaly exceeds the 95th percentile. Among the dynamical terms, horizontal temperature advection of the climatological temperature by the anomalous wind dominates SAT anomaly growth over the extratropics, while nonlinear horizontal temperature advection is a major factor over high-latitude regions and the adiabatic warming is important over major mountainous regions. During the decay period, advection of the climatological temperature by the anomalous wind sustains the warming while nonlinear advection becomes the dominant decay mechanism. Among diabatic heating processes, vertical mixing contributes to the SAT anomaly growth over most locations while longwave radiative cooling hinders SAT anomaly growth, especially over the ocean. However, over arid regions during summer, longwave heating largely contributes to SAT anomaly growth while the vertical mixing dampens the SAT anomaly growth. During the decay period, both longwave cooling and vertical mixing contribute to SAT anomaly decay with more pronounced effects over the ocean and land, respectively. These regional and seasonal characteristics of the processes that drive extreme SAT events can serve as a benchmark for understanding the future behavior of extreme weather. 
    more » « less