skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Potential ecological and socio-economic effects of a novel megaherbivore introduction: the hippopotamus in Colombia
Abstract: Introduced species can have strong ecological, social and economic effects on their non-native environment. Introductions of megafaunal species are rare and may contribute to rewilding efforts, but they may also have pronounced socio-ecological effects because of their scale of influence. A recent introduction of the hippopotamus (Hippopotamus amphibius) into Colombia is a novel introduction of a megaherbivore onto a new continent, and raises questions about the future dynamics of the socio-ecological system into which it has been introduced. Here we synthesize current knowledge about the Colombian hippopotamus population, review the literature on the species to predict potential ecological and socio-economic effects of this introduction, and make recommendations for future study. Hippopotamuses can have high population growth rates (7–11%) and, on the current trajectory, we predict there could be 400–800 individuals in Colombia by 2050. The hippopotamus is an ecosystem engineer that can have profound effects on terrestrial and aquatic environments and could therefore affect the native biodiversity of the Magdalena River basin. Hippopotamuses are also aggressive and may pose a threat to the many inhabitants of the region who rely upon the Magdalena River for their livelihoods, although the species could provide economic benefits through tourism. Further research is needed to quantify the current and future size and distribution of this hippopotamus population and to predict the likely ecological, social and economic effects. This knowledge must be balanced with consideration of social and cultural concerns to develop appropriate management strategies for this novel introduction.  more » « less
Award ID(s):
1753727
PAR ID:
10143549
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Oryx
ISSN:
0030-6053
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The introduction of hippos into the wild in Colombia has been marked by their rapid population growth and widespread dispersal on the landscape, high financial costs of management, and conflicting social perspectives on their management and fate. Here we use population projection models to investigate the effectiveness and cost of management options under consideration for controlling introduced hippos. We estimate there are 91 hippos in the middle Magdalena River basin, Colombia, and the hippo population is growing at an estimated rate of 9.6% per year. At this rate, there will be 230 hippos by 2032 and over 1,000 by 2050. Applying the population control methods currently under consideration will cost at least 1–2 million USD to sufficiently decrease hippo population growth to achieve long-term removal, and depending on the management strategy selected, there may still be hippos on the landscape for 50–100 years. Delaying management actions for a single decade will increase minimum costs by a factor of 2.5, and some methods may become infeasible. Our approach illustrates the trade-offs inherent between cost and effort in managing introduced species, as well as the importance of acting quickly, especially when dealing with species with rapid population growth rates and potential for significant ecological and social impacts. 
    more » « less
  2. Abstract The introduction of nonnative species and reductions in native biodiversity have resulted in substantial changes in vector and host communities globally, but the consequences for pathogen transmission are poorly understood. In lowland Hawaii, bird communities are composed of primarily introduced species, with scattered populations of abundant native species. We examined the influence of avian host community composition, specifically the role of native and introduced species, as well as host diversity, on the prevalence of avian malaria (Plasmodium relictum) in the southern house mosquito (Culex quinquefasciatus). We also explored the reciprocal effect of malaria transmission on native host populations and demography. Avian malaria infection prevalence in mosquitoes increased with the density and relative abundance of native birds, as well as host community competence, but was uncorrelated with host diversity. Avian malaria transmission was estimated to reduce population growth rates of Hawai‘i ʻamakihi (Chlorodrepanis virens) by 7–14%, but mortality from malaria could not explain gaps in this species’ distribution at our sites. Our results suggest that, in Hawaii, native host species increase pathogen transmission to mosquitoes, but introduced species can also support malaria transmission alone. The increase in pathogen transmission with native bird abundance leads to additional disease mortality in native birds, further increasing disease impacts in an ecological feedback cycle. In addition, vector abundance was higher at sites without native birds and this overwhelmed the effects of host community composition on transmission such that infected mosquito abundance was highest at sites without native birds. Higher disease risk at these sites due to higher vector abundance could inhibit recolonization and recovery of native species to these areas. More broadly, this work shows how differences in host competence for a pathogen among native and introduced taxa can influence transmission and highlights the need to examine this question in other systems to determine the generality of this result. 
    more » « less
  3. Abstract Despite growing interest in conservation and re‐establishment of ecological connectivity, few studies have explored its context‐specific social–ecological outcomes. We aimed to explore social and ecological outcomes to changing stream connectivity for both stakeholders and native fish species impacted by habitat fragmentation and nonnative species. We (1) investigated stakeholder perceptions of the drivers and outcomes of stream connectivity, and (2) evaluated the effects of stakeholder‐identified connectivity and nonnative species scenarios on Yellowstone cutthroat trout (YCT) populations. Our study was conducted in the Teton River, Idaho, USA. We integrated two modeling approaches, mental modeling and individual‐based ecological modeling, to explore social–ecological outcomes for stakeholders and YCT populations. Aggregation of mental models revealed an emergent pattern of increasing complexity as more types of stakeholders were considered, as well as gaps and linkages among different stakeholder knowledge areas. These results highlight the importance of knowledge sharing among stakeholders when making decisions about connectivity. Additionally, the results from the individual‐based models suggested that the potential for a large, migratory life history form of YCT, in addition to self‐preference mating where they overlap with rainbow trout, had the strongest effects on outcomes for YCT. Exploring social and ecological drivers and outcomes to changing connectivity is useful for anticipating and adapting to unintended outcomes, as well as making decisions for desirable outcomes. The results from this study can contribute to the management dialogue surrounding stream connectivity in the Teton River, as well as to our understanding of connectivity conservation and its outcomes more broadly. 
    more » « less
  4. Doi, Hideyuki (Ed.)
    Non-native species have the potential to cause ecological and economic harm to coastal and estuarine ecosystems. Understanding which habitat types are most vulnerable to biological invasions, where invasions originate, and the vectors by which they arrive can help direct limited resources to prevent or mitigate ecological and socio-economic harm. Information about the occurrence of non-native species can help guide interventions at all stages of invasion, from first introduction, to naturalization and invasion. However, monitoring at relevant scales requires considerable investment of time, resources, and taxonomic expertise. Environmental DNA (eDNA) metabarcoding methods sample coastal ecosystems at broad spatial and temporal scales to augment established monitoring methods. We use COI mtDNA eDNA sampling to survey a diverse assemblage of species across distinct habitats in the Salish Sea in Washington State, USA, and classify each as non-native, native, or indeterminate in origin. The non-native species detected include both well-documented invaders and species not previously reported within the Salish Sea. We find a non-native assemblage dominated by shellfish and algae with native ranges in the temperate western Pacific, and find more-retentive estuarine habitats to be invaded at far higher levels than better-flushed rocky shores. Furthermore, we find an increase in invasion level with higher water temperatures in spring and summer across habitat types. This analysis contributes to a growing understanding of the biotic and abiotic factors that influence invasion level, and underscores the utility of eDNA surveys to monitor biological invasions and to better understand the factors that drive these invasions. 
    more » « less
  5. null (Ed.)
    Biological invasions are inextricably linked to how people collect, move, interact with and perceive non-native species. However, invasion frameworks generally do not consider reciprocal interactions between non-native species and people. Non-native species can shape human actions via beneficial or detrimental ecological and socioeconomic effects and people, in turn, shape invasions through their movements, behaviour and how they respond to the collection, transport, introduction and spread of non-natives. The feedbacks that stem from this ‘coupled human and natural system’ (CHANS) could therefore play a key role in mitigating (i.e. negative feedback loops) or exacerbating (i.e. positive feedback loops) ongoing and future invasions. We posit that the invasion process could be subdivided into three CHANS that span from the source region from which non-natives originate to the recipient region in which they establish and spread. We also provide specific examples of feedback loops that occur within each CHANS that have either reduced or facilitated new introductions and spread of established non-native species. In so doing, we add to exisiting invasion frameworks to generate new hypotheses about human-based drivers of biological invasions and further efforts to determine how ecological outcomes feed back into human actions. 
    more » « less