skip to main content


Title: BERT with History Answer Embedding for Conversational Question Answering
Conversational search is an emerging topic in the information retrieval community. One of the major challenges to multi-turn conversational search is to model the conversation history to understand the current question. Existing methods either prepend history turns to the current question or use complicated attention mechanisms to model the history. We propose a conceptually simple yet highly effective approach referred to as history answer embedding. It enables seamless integration of conversation history into a conversational question answering (ConvQA) model built on BERT (Bidirectional Encoder Representations from Transformers). We first explain our view that ConvQA is a simplified but concrete setting of conversational search, and then we provide a general framework to solve ConvQA. We further demonstrate the effectiveness of our approach under this framework. Finally, we analyze the impact of different numbers of history turns under different settings. We show that history prepending methods degrade dramatically when given a long conversation history while our method is robust and shows advantages under such a situation, which provides new insights into conversation history modeling in ConvQA.  more » « less
Award ID(s):
1715095
NSF-PAR ID:
10143764
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR'19
Page Range / eLocation ID:
1133 to 1136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conversational AI is a rapidly developing research field in both industry and academia. As one of the major branches of conversational AI, question answering and conversational search has attracted significant attention of researchers in the information retrieval community. It has been a long overdue feature for search engines or conversational assistants to retrieve information iteratively and interactively in a conversational manner. Previous work argues that conversational question answering (ConvQA) is a simplified but concrete setting of conversational search. In this setting, one of the major challenges is to leverage the conversation history to understand and answer the current question. In this work, we propose a novel solution for ConvQA that involves three aspects. First, we propose a positional history answer embedding method to encode conversation history with position information using BERT (Bidirectional Encoder Representations from Transformers) in a natural way. BERT is a powerful technique for text representation. Second, we design a history attention mechanism (HAM) to conduct a "soft selection" for conversation histories. This method attends to history turns with different weights based on how helpful they are on answering the current question. Third, in addition to handling conversation history, we take advantage of multi-task learning (MTL) to do answer prediction along with another essential conversation task (dialog act prediction) using a uniform model architecture. MTL is able to learn more expressive and generic representations to improve the performance of ConvQA. We demonstrate the effectiveness of our model with extensive experimental evaluations on QuAC, a large-scale ConvQA dataset. We show that position information plays an important role in conversation history modeling. We also visualize the history attention and provide new insights into conversation history understanding. The complete implementation of our model will be open-sourced. 
    more » « less
  2. null (Ed.)
    Users often need to look through multiple search result pages or reformulate queries when they have complex information-seeking needs. Conversational search systems make it possible to improve user satisfaction by asking questions to clarify users’ search intents. This, however, can take significant effort to answer a series of questions starting with “what/why/how”. To quickly identify user intent and reduce effort during interactions, we propose an intent clarification task based on yes/no questions where the system needs to ask the correct question about intents within the fewest conversation turns. In this task, it is essential to use negative feedback about the previous questions in the conversation history. To this end, we propose a Maximum-Marginal-Relevance (MMR) based BERT model (MMR-BERT) to leverage negative feedback based on the MMR principle for the next clarifying question selection. Experiments on the Qulac dataset show that MMR-BERT outperforms state-of-the-art baselines significantly on the intent identification task and the selected questions also achieve significantly better performance in the associated document retrieval tasks. 
    more » « less
  3. Abstract In an information-seeking conversation, a user may ask questions that are under-specified or unanswerable. An ideal agent would interact by initiating different response types according to the available knowledge sources. However, most current studies either fail to or artificially incorporate such agent-side initiative. This work presents InSCIt, a dataset for Information-Seeking Conversations with mixed-initiative Interactions. It contains 4.7K user-agent turns from 805 human-human conversations where the agent searches over Wikipedia and either directly answers, asks for clarification, or provides relevant information to address user queries. The data supports two subtasks, evidence passage identification and response generation, as well as a human evaluation protocol to assess model performance. We report results of two systems based on state-of-the-art models of conversational knowledge identification and open-domain question answering. Both systems significantly underperform humans, suggesting ample room for improvement in future studies.1 
    more » « less
  4. null (Ed.)
    Asking clarifying questions in response to ambiguous or faceted queries has been recognized as a useful technique for various information retrieval systems, in particular, conversational search systems with limited bandwidth interfaces. Analyzing and generating clarifying question have been recently studied in the literature. However, accurate utilization of user responses to clarifying questions has been relatively less explored. In this paper, we propose a neural network model based on a novel attention mechanism, called multi source attention network. Our model learns a representation for a user-system conversation that includes clarifying questions. In more detail, with the help of multiple information sources, our model weights each term in the conversation. In our experiments, we use two separate external sources, including the top retrieved documents and a set of different possible clarifying questions for the query. We implement the proposed representation learning model for two downstream tasks in conversational search; document retrieval and next clarifying question selection. We evaluate our models using a public dataset for search clarification. Our experiments demonstrate significant improvements compared to competitive baselines. 
    more » « less
  5. Conversational systems typically focus on functional tasks such as scheduling appointments or creating todo lists. Instead we design and evaluate SlugBot (SB), one of 8 semifinalists in the 2018 AlexaPrize, whose goal is to support casual open-domain social inter-action. This novel application requires both broad topic coverage and engaging interactive skills. We developed a new technical approach to meet this demanding situation by crowd-sourcing novel content and introducing playful conversational strategies based on storytelling and games. We collected over 10,000 conversations during August 2018 as part of the Alexa Prize competition. We also conducted an in-lab follow-up qualitative evaluation. Over-all users found SB moderately engaging; conversations averaged 3.6 minutes and involved 26 user turns. However, users reacted very differently to different conversation subtypes. Storytelling and games were evaluated positively; these were seen as entertaining with predictable interactive structure. They also led users to impute personality and intelligence to SB. In contrast, search and general Chit-Chat induced coverage problems; here users found it hard to infer what topics SB could understand, with these conversations seen as being too system-driven. Theoretical and design implications suggest a move away from conversational systems that simply provide factual information. Future systems should be designed to have their own opinions with personal stories to share, and SB provides an example of how we might achieve this. 
    more » « less