skip to main content


Title: Time-temperature paths from intragrain oxygen isotope zoning
Oxygen isotopes are a well-known geochemical tool with applications to equilibrium thermometry, fluid tracing, and magma and ore petrogenesis. High-precision, high-spatial resolution oxygen isotope analysis by SIMS has also enabled the development of oxygen isotopes as a tool for geospeedometry. Here, we detail Fast Grain Boundary (FGB), an updated computational approach and software tool for determining time-temperature (T-t) histories through modeling of oxygen isotope diffusion. FBG models a rock system, rather than a single phase (cf. thermochronometry based on He, Ar, Pb), and has the potential to constrain continuous thermal histories over a wide range of temperatures, including at high temperature (500-800°C). The new FGB also allows for inversion of the FGB model to extract thermal histories from intragrain oxygen isotope zoning data using the Levenberg-Marquardt (LM) algorithm. Tests with synthetic datasets show that the LM algorithm is able to distinguish between simple linear cooling and more complex thermal histories containing, for instance, reheating events. Inversion of an actual oxygen isotope data set from titanite are consistent with the previously determined T-t path for the sample region, showing a brief period of >700 °C conditions, followed by cooling below 500 °C in <5 m.y.. However, the inversion suffers from a flat-bottomed minimum and does not produce a well-converged T-t path. These results point to analytical precision as a continuing challenge in recovering tightly constrained thermal histories for the real data set and emphasize the need for further development of high-precision microanalytical oxygen isotope standards. In the meantime, we use FGB modeling to explore sampling and analytical approaches that improve the resolution of inversion solutions for current analytical capabilities. For instance, inversion most successfully recovers a well constrained T-t path solution when SIMS analysis targets oxygen isotope gradients developed near grain rims, as opposed to oxygen isotope values in grain centers. Additional tests that probe the sensitivity of the inversion results to modal mineralogy and relative grain sizes suggest that careful targeting of samples in the field can enhance the recovery of unique T-t paths.  more » « less
Award ID(s):
1650355
NSF-PAR ID:
10144064
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
AGU 2019 Fall Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an updated and expanded version of the Fast Grain Boundary (FGB) program, originally developed by [1]. In its current form, FGB forward models the oxygen-isotope compositional evolution of a rock resulting from diffusive oxygen isotope exchange. FGB is a tool for 1) constraining thermal histories (cooling rates and durations) from measured intragrain oxygen isotope zoning profiles, and 2) predicting oxygen isotope zoning that results from coupled volume and grain boundary diffusion. The FGB model is mass-balance constrained through exchange with a finite, grain-boundary reservoir and does not require a Dodson-like infinite reservoir assumption. The new FGB program code is written in Python and includes a graphical user interface. The inverse modeling capabilities for FGB are currently under development. We present preliminary results for thermal history inversion from a test case using oxygenisotope diffusion zoning data from titanite. Both the gradient descent and the Levenberg-Marquardt (LM) algorithms are applied to the FGB model in search of cooling histories that maximize agreement between the model output and recorded data. Various schemes of regularization are employed to ensure meaningful realizations of cooling histories. Additionally, to prevent local extrema entrapment, the results of these algorithms are compared to long-run brute force methods that have been implemented through Amazon’s cloud computing services. The observed zoning profiles in the example titanite dataset can be forward modeled with several arbitrary (and potentially biased) cooling histories. The preliminary results of inverse modeling reduce initial bias and suggest an episodic cooling history that may include an isothermal period or even a reheating event. These results demonstrate both the potential for oxygen-isotope zoning to preserve prevailing thermal events and the potential of the FGB model for recovering these events. [1] Eiler, Baumgartner & Valley (1994), Computers & Geoscience 20, 1415-1434. 
    more » « less
  2. Abstract Knowledge of oxygen diffusion in garnet is crucial for a correct interpretation of oxygen isotope signatures in natural samples. A series of experiments was undertaken to determine the diffusivity of oxygen in garnet, which remains poorly constrained. The first suite included high-pressure (HP), nominally dry experiments performed in piston-cylinder apparatus at: (1) T = 1050–1600 °C and P = 1.5 GPa and (2) T = 1500 °C and P = 2.5 GPa using yttrium aluminum garnet (YAG; Y3Al5O12) cubes. Second, HP H2O-saturated experiments were conducted at T = 900 °C and P = 1.0–1.5 GPa, wherein YAG crystals were packed into a YAG + Corundum powder, along with 18O-enriched H2O. Third, 1 atm experiments with YAG cubes were performed in a gas-mixing furnace at T = 1500–1600 °C under Ar flux. Finally, an experiment at T = 900 °C and P = 1.0 GPa was done using a pyrope cube embedded into pyrope powder and 18O-enriched H2O. Experiments using grossular were not successful. Profiles of 18O/(18O+16O) in the experimental charges were analyzed with three different secondary ion mass spectrometers (SIMS): sensitive high-resolution ion microprobe (SHRIMP II and SI), CAMECA IMS-1280, and NanoSIMS. Considering only the measured length of 18O diffusion profiles, similar results were obtained for YAG and pyrope annealed at 900 °C, suggesting limited effects of chemical composition on oxygen diffusivity. However, in both garnet types, several profiles deviate from the error function geometry, suggesting that the behavior of O in garnet cannot be fully described as simple concentration-independent diffusion, certainly in YAG and likely in natural pyrope as well. The experimental results are better described by invoking O diffusion via two distinct pathways with an inter-site reaction allowing O to move between these pathways. Modeling this process yields two diffusion coefficients (D values) for O, one of which is approximately two orders of magnitude higher than the other. Taken together, Arrhenius relationships are:log⁡Dm2s-1=-7.2(±1.3)+(-321(±32)kJmol-12.303RT) for the slow pathway, andlog⁡Dm2s-1=-5.4(±0.7)+(-321(±20)kJmol-12.303RT) for the fast pathway. We interpret the two pathways as representing diffusion following vacancy and inter-stitial mechanisms, respectively. Regardless, our new data suggest that the slow mechanism is prevalent in garnet with natural compositions, and thus is likely to control the retentivity of oxygen isotopic signatures in natural samples. The diffusivity of oxygen is similar to Fe-Mn diffusivity in garnet at 1000–1100 °C and Ca diffusivity at 850 °C. However, the activation energy for O diffusion is larger, leading to lower diffusivities at P-T conditions characterizing crustal metamorphism. Therefore, original O isotopic signatures can be retained in garnets showing major element zoning partially re-equilibrated by diffusion, with the uncertainty caveat of extrapolating the experimental data to lower temperature conditions. 
    more » « less
  3. Carbonates are ubiquitous in the rock record and provide a broad array of stable isotope-based paleoclimatic proxies (i.e., δ18O, δ13C, ∆17O, ∆47, ∆48) that provide information on stratigraphy, carbon cycling, temperature, hydrology, and the altitude of ancient land surfaces. Thus, carbonates are an essential archive of environmental and topographic histories of continental terranes. However, carbonate minerals are highly susceptible to post-depositional alteration of primary isotopic values via fluid-mediated and solid-state reactions. We propose a hierarchical suite of techniques to comprehensively assess alteration in carbonates, from essential and readily accessible tools to novel, high-resolution techniques. This framework provides a means of identifying preserved textures in differentially altered samples that contain high-value environmental information. To illustrate this progressive approach, we present a case study of Tethyan nearshore carbonates from the Paleocene Tso Jianding Group (Tibet). We demonstrate the utility of each technique in identifying chemical and crystallographic indicators of post-depositional alteration at progressively finer spatial scales. For example, secondary ionization mass spectrometry (SIMS) oxygen isotope maps of micrite and bioclasts reveal significant isotopic heterogeneity due to grain-scale water-rock exchange in textures that were labeled “primary” by optical inspection at coarser spatial resolution. Optical and cathodoluminescence microscopy should be the minimum required assessment of carbonate samples used in stable isotope analyses, but supplemented when necessary by SIMS, PIC mapping, and other yet untapped technologies that may allow distinction of primary and altered fabrics at finer spatial resolutions.

     
    more » « less
  4. Abstract

    Measurements of oxygen and hydrogen stable isotopes in precipitation (δ18OPand δ2HP) provide a valuable tool for understanding modern hydrological processes and the empirical foundation for interpreting paleoisotope archives. However, long‐term data sets of modern δ18OPand δ2HPin southern Alaska are entirely absent, thus limiting our insight and application of regionally defined climate‐isotope relationships in this proxy‐rich region. We present and utilize a 13‐year‐long record of event‐based δ18OPand δ2HPdata from Anchorage, Alaska (2005–2018,n = 332), to determine the mechanisms controlling precipitation isotopes. Local surface air temperature explains ~30% of variability in the δ18OPdata with a temperature‐δ18O slope of 0.31 ‰/°C, indicating that δ18OParchives may not be suitable paleo‐thermometers in this region. Instead, back‐trajectory modeling reveals how winter δ18OP2HPreflects synoptic and mesoscale processes in atmospheric circulation that drive changes in the passage of air masses with different moisture sources, transport, and rainout histories. Specifically, meridional systems—with either northerly flow from the Arctic or southerly flow from the Gulf of Alaska—have relatively low δ18OP2HPdue to progressive cooling and removal of precipitation as it condenses with altitude over Alaska's southern mountain ranges. To the contrary, zonally derived moisture from either the North Pacific and/or Bering Sea retains relatively high δ18OP2HPvalues. These new data contribute a better understanding of the modern Alaska water isotope cycle and provide an empirical basis for interpreting paleoisotope archives in context of regional atmospheric circulation.

     
    more » « less
  5. Abstract. Retrograde metamorphic rocks provide key insights into the pressure–temperature (P–T) evolution of exhumed material, and resultant P–T constraints have direct implications for the mechanical and thermal conditions of subduction interfaces. However, constraining P–T conditions of retrograde metamorphic rocks has historically been challenging and has resulted in debate about the conditions experienced by these rocks. In this work, we combine elastic thermobarometry with oxygen isotope thermometry to quantify the P–T evolution of retrograde metamorphic rocks of the Cycladic Blueschist Unit (CBU), an exhumed subduction complex exposed on Syros, Greece. We employ quartz-in-garnet and quartz-in-epidote barometry to constrain pressures of garnet and epidote growth near peak subduction conditions and during exhumation, respectively. Oxygen isotope thermometry of quartz and calcite within boudin necks was used to estimate temperatures during exhumation and to refine pressure estimates. Three distinct pressure groups are related to different metamorphic events and fabrics: high-pressure garnet growth at ∼1.4–1.7 GPa between 500–550 ∘C, retrograde epidote growth at ∼1.3–1.5 GPa between 400–500 ∘C, and a second stage of retrograde epidote growth at ∼1.0 GPa and 400 ∘C. These results are consistent with different stages of deformation inferred from field and microstructural observations, recording prograde subduction to blueschist–eclogite facies and subsequent retrogression under blueschist–greenschist facies conditions. Our new results indicate that the CBU experienced cooling during decompression after reaching maximum high-pressure–low-temperature conditions. These P–T conditions and structural observations are consistent with exhumation and cooling within the subduction channel in proximity to the refrigerating subducting plate, prior to Miocene core-complex formation. This study also illustrates the potential of using elastic thermobarometry in combination with structural and microstructural constraints, to better understand the P–T-deformation conditions of retrograde mineral growth in high-pressure–low-temperature (HP/LT) metamorphic terranes. 
    more » « less