skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multimode-fiber-based single-shot full-field measurement of optical pulses
Multimode fibers are explored widely for optical communication, spectroscopy, imaging, and sensing applications. Here we demonstrate a single-shot full-field temporal measurement technique based on a multimode fiber. The complex spatiotemporal speckle field is created by a reference pulse propagating through the fiber, and it interferes with a signal pulse. From the time-integrated interference pattern, both the amplitude and the phase of the signal are retrieved. The simplicity and high sensitivity of our scheme illustrate the potential of multimode fibers as versatile and multi-functional sensors.  more » « less
Award ID(s):
1809099
PAR ID:
10144265
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
8
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 2462
Size(s):
Article No. 2462
Sponsoring Org:
National Science Foundation
More Like this
  1. Characterizing ultrashort optical pulses has always been a critical but difficult task, which has a broad range of applications. We propose and demonstrate a self-referenced method of characterizing ultrafast pulses with a multimode fiber. The linear and nonlinear speckle patterns formed at the distal end of a multimode fiber are used to recover the spectral amplitude and phase of an unknown pulse. We deploy a deep learning algorithm for phase recovery. The diversity of spatial and spectral modes in a multimode fiber removes any ambiguity in the sign of the recovered spectral phase. Our technique allows for single-shot pulse characterization in a simple experimental setup. This work reveals the potential of multimode fibers as a versatile and multi-functional platform for optical sensing. 
    more » « less
  2. Abstract Long-range correlations play an essential role in wave transport through disordered media, but have rarely been studied in other complex systems. Here we discover spatio-temporal intensity correlations for an optical pulse propagating through a multimode fiber with strong random mode coupling. Positive long-range correlation arises from multiple scattering in fiber mode space and depends on the statistical distribution of arrival times. By optimizing the incident wavefront of a pulse, we maximize the power transmitted at a selected time, and such control is significantly enhanced by the long-range spatio-temporal correlation. We provide an explicit relation between the correlation and the power enhancement, which agrees with experimental results. Our work shows that multimode fibers provide a fertile ground for studying complex wave phenomena. The strong spatio-temporal correlation can be employed for efficient power delivery at a well-defined time. 
    more » « less
  3. We study the coherence characteristics of light propagating in nonlinear graded-index (GRIN) multimode fibers after attaining optical thermal equilibrium conditions. The role of optical temperature on the spatial mutual coherence function and the associated correlation area is systematically investigated. In this respect, we show that the coherence properties of the field at the output of a multimode nonlinear fiber can be controlled through its optical thermodynamic properties. 
    more » « less
  4. Noninvasive transabdominal fetal pulse oximetry can provide clinicians critical assessment of fetal health and potentially contribute to improved management of childbirth. Conventional pulse oximetry through continuous wave (CW) light has challenges measuring the signals from deep tissue and separating the weak fetal signal from the strong maternal signal. Here, we propose a new approach for transabdominal fetal pulse oximetry through interferometric near-infrared spectroscopy (iNIRS). This approach provides pathlengths of photons traversing the tissue, which facilitates the extraction of fetal signals by rejecting the very strong maternal signal from superficial layers. We use a multimode fiber combined with a mode-field converter at the detection arm to boost the signal of iNIRS. Together, we can detect signals from deep tissue (>∼1.6 cm in sheep abdomen and in human forearm) at merely 1.1 cm distance from the source. Using a pregnant sheep model, we experimentally measured and extracted the fetal heartbeat signals originating from deep tissue. This validated a key step towards transabdominal fetal pulse oximetry through iNIRS and set a foundation for further development of this method to measure the fetal oxygen saturation. 
    more » « less
  5. Kerr beam cleaning is a nonlinear phenomenon in graded-index multimode fiber where power flows toward the fundamental mode, generating bell-shaped output beams. Here we study beam cleaning of femtosecond pulses accompanied by gain in a multimode fiber amplifier. Mode-resolved energy measurements and numerical simulations showed that the amplifier generates beams with high fundamental mode content (greater than 30% of the overall pulse energy) for a wide range of amplification levels. Control experiments using stretched pulses that evolve without strong Kerr nonlinear effects showed a degrading beam profile, in contrast to nonlinear beam cleaning. Temporal measurements showed that seed pulse parameters have a strong effect on the amplified pulse quality. These results may influence the design of future high-performance fiber lasers and amplifiers. 
    more » « less