skip to main content


Title: Cognitive and Social Benefits Among Underrepresented First-Year Biology Students in a Field Course: A Case Study of Experiential Learning in the Galápagos
Student attrition is a persistent challenge in the life sciences, particularly among underrepresented minorities, first-generation students, and women. Experiential learning through short-term study abroad opportunities diversifies curricula by immersing students in nontraditional academic environments. However, most experiential learning and study abroad opportunities are primarily available to upper-division undergraduates. Here, we present a qualitative analysis of an experiential learning opportunity offered exclusively to first-year U.S. undergraduate students from underrepresented demographics. We performed ethnographic observations of a 10-day field component in the Galápagos Islands and analyzed self-reported survey results and field journals. Students consistently reported strong cognitive gains in their understanding of basic evolutionary concepts. Most students also benefited socially, although we observed higher variation in selfreported social gains. Our findings suggest that immersive field courses increase scientific literacy and promote social cohesion among students. We speculate that experiential learning opportunities may improve retention of underrepresented minorities in the life sciences, and we encourage future studies to further examine the short-term and long-term impacts of study abroad on student cognition and retention.  more » « less
Award ID(s):
1710739
NSF-PAR ID:
10144461
Author(s) / Creator(s):
Date Published:
Journal Name:
Frontiers
Volume:
3
ISSN:
2380-8144
Page Range / eLocation ID:
1–19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this proposal, we will share some initial findings about how teacher and student engagement in cogenerative dialogues influenced the development of the Culturally Relevant Pedagogical Guidelines for Computational Thinking and Computer Science (CRPG-CSCT). The CRPG-CSCT’s purpose is to provide computer science teachers with tools to enhance their instruction by accurately reflecting students’ diverse cultural resources in the classroom. Additionally, the CRPG-CSCT will provide guidance to non-computer science teachers on how to facilitate the integration of computational thinking skills to a broad spectrum of classes in the arts, humanities, sciences, social sciences, and mathematics. Our initial findings shared here are part of a larger NSF-funded research project (Award No. 2122367) which aims to better understand the barriers to entry and challenges for success faced by underrepresented secondary school students in computer science, through direct engagement with the students themselves. Throughout the 2022-23 academic year, the researchers have been working with a small team of secondary school teachers, students, and instructional designers, as well as university faculty in computer science, secondary education, and sociology to develop the CRPG-CSCT. The CRPG-CSCT is rooted in the tenets of culturally relevant pedagogy (Ladson-Billings, 1995) and borrows from Muhammad’s (2020) work in Cultivating Genius: An Equity Framework for Culturally and Historically Responsive Literacy. The CRPG-CCT is being developed over six day-long workshops held throughout the academic year. At the time of this submission, five of the six workshops had been completed. Each workshop utilized cogenerative dialogues (cogens) as the primary tool for organizing and sustaining participants’ engagement. Through cogens, participants more deeply learn about students’ cultural capital and the value of utilizing that capital within the classroom (Roth, Lawless, & Tobin, 2000). The success of cogens relies on following specific protocols (Emdin, 2016), such as listening attentively, ensuring there are equal opportunities for all participants to share, and affirming the experiences of other participants. The goal of a cogen is to reach a collective decision, based on the dialogue, that will positively impact students by explicitly addressing barriers to their engagement in the classroom. During each workshop, one member of the research team and one undergraduate research assistant observed the interactions among cogen participants and documented these in the form of ethnographic field notes. Another undergraduate research assistant took detailed notes during the workshop to record the content of small and large group discussions, presentations, and questions/responses throughout the workshops. A grounded theory approach was used to analyze the field notes. Additionally, at the conclusion of each workshop, participants completed a Cogen Feedback Survey (CFS) to gather additional information. The CFS were analyzed through open thematic coding, memos, and code frequencies. Our preliminary results demonstrate high levels of engagement from teacher and student participants during the workshops. Students identified that the cogen structure allowed them to participate comfortably, openly, and honestly. Further, students described feeling valued and heard. Students’ ideas and experiences were frequently affirmed, which served as an important step toward dismantling traditional teacher-student boundaries that might otherwise prevent them from sharing freely. Another result from the use of cogens was the shared experience of participants comprehending views from the other group’s perspective in the classroom. Students appreciated the opportunity to learn from teachers about their struggles in keeping students engaged. Teachers appreciated the opportunity to better understand students’ schooling experiences and how these may affirm or deny aspects of their identity. Finally, all participants shared meaningful suggestions and strategies for future workshops and for the collective betterment of the group. Initial findings shared here are important for several reasons. First, our findings suggest that cogens are an effective approach for fostering participants’ commitment to creating the conditions for students’ success in the classroom. Within the context of the workshops, cogens provided teachers, students, and faculty with opportunities to engage in authentic conversations for addressing the recruitment and retention problems in computer science for underrepresented students. These conversations often resulted in the development of tangible pedagogical approaches, examples, metaphors, and other strategies to directly address the recruitment and retention of underrepresented students in computer science. Finally, while we are still developing the CRPG-CSCT, cogens provided us with the opportunity to ensure the voices of teachers and students are well represented in and central to the document. 
    more » « less
  2. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  3. First-generation (FG) and/or low-income (LI) engineering student populations are of particular interest in engineering education. However, these populations are not defined in a consistent manner across the literature or amongst stakeholders. The intersectional identities of these groups have also not been fully explored in most quantitative-based engineering education research. This research paper aims to answer the following three research questions: (RQ1) How do students’ demographic characteristics and college experiences differ depending on levels of parent educational attainment (which forms the basis of first-generation definitions) and family income? (RQ2) How do ‘first-generation’ and ‘low-income’ definitions impact results comparing to their continuing-generation and higher-income peers? (RQ3) How does considering first-generation and low-income identities through an intersectional lens deepen insight into the experiences of first-generation and low-income groups? Data were drawn from a nationally representative survey of engineering juniors and seniors (n = 6197 from 27 U.S. institutions). Statistical analyses were conducted to evaluate respondent differences in demographics (underrepresented racial/ethnic minority (URM), women, URM women), college experiences (internships/co-ops, having a job, conducting research, and study abroad), and engineering task self-efficacy (ETSE), based on various definitions of ‘first generation’ and ‘low income’ depending on levels of parental educational attainment and self-reported family income. Our results indicate that categorizing a first-generation student as someone whose parents have less than an associate’s degree versus less than a bachelor’s degree may lead to different understandings of their experiences (RQ1). For example, the proportion of URM students is higher among those whose parents have less than an associate’s degree than among their “associate’s degree or more” peers (26% vs 11.9%). However, differences in college experiences are most pronounced among students whose parents have less than a bachelor’s degree compared with their “bachelor’s degree or more” peers: having a job to help pay for college (55.4% vs 47.3%), research with faculty (22.7% vs 35.0%), and study abroad (9.0% vs 17.3%). With respect to differences by income levels, respondents are statistically different across income groups, with fewer URM students as family income level increases. As family income level increases, there are more women in aggregate, but fewer URM women. College experiences are different for the middle income or higher group (internship 48.4% low and lower-middle income vs 59.0% middle income or higher; study abroad 11.2% vs 16.4%; job 58.6% vs 46.8%). Despite these differences in demographic characteristics and college experiences depending on parental educational attainment and family income, our dataset indicates that the definition does not change the statistical significance when comparing between first-generation students and students who were continuing-generation by any definition (RQ2). First-generation and low-income statuses are often used as proxies for one another, and in this dataset, are highly correlated. However, there are unique patterns at the intersection of these two identities. For the purpose of our RQ3 analysis, we define ‘first-generation’ as students whose parents earned less than a bachelor’s degree and ‘low-income’ as low or lower-middle income. In this sample, 68 percent of students were neither FG nor LI while 11 percent were both (FG&LI). On no measure of demographics or college experience is the FG&LI group statistically similar to the advantaged group. Low-income students had the highest participation in working to pay for college, regardless of parental education, while first-generation students had the lower internship participation than low-income students. Furthermore, being FG&LI is associated with lower ETSE compared with all other groups. These results suggest that care is required when applying the labels “first-generation” and/or “low-income” when considering these groups in developing institutional support programs, in engineering education research, and in educational policy. Moreover, by considering first-generation and low-income students with an intersectional lens, we gain deeper insight into engineering student populations that may reveal potential opportunities and barriers to educational resources and experiences that are an important part of preparation for an engineering career. 
    more » « less
  4. Currently, substantial efforts are underway to improve the engagement and retention of engineering and computer science (E/CS) students in their academic programs. Student participation in specific activities known as High Impact Educational Practices (HIP) has been shown to improve student outcomes across a variety of degree fields. Thus, we suggest that understanding how and why E/CS students, especially those from historically underrepresented groups, participate in HIP is vital for supporting efforts aimed at improving E/CS student engagement and retention. The aim of the current study is to examine the participation of E/CS undergraduates enrolled at two western land-grant institutions (both institutions are predominantly white; one is an emerging Hispanic-serving institution) across five HIEP (i.e., global learning and study aboard internships, learning communities, service and community-based learning, and undergraduate research) that are offered outside of required E/CS curricula and are widely documented in the research literature. As part of a larger study, researchers developed an online questionnaire to explore student HIP participation and then surveyed E/CS students (n = 576) across both land-grant institutions. Subsequently, researchers will use survey results to inform the development of focus groups interview protocols. Focus group interviews will be conducted with purposefully selected E/CS students who participated in the survey. Combined survey and focus group data will then be analyzed to more deeply understand why and how E/CS students participate in the HIP at their university. This research paper reports on the frequency distribution analysis of the survey data generated with E/CS undergraduates enrolled at one of the two land grant institutions. The combined sample included E/CS undergraduates from the following demographic groups: female (34 %), Asian (10 %), Black or African American (2%), Hispanic or Latinx (6%), Native American or Alaskan Native (1%), Native Hawaiian or Other Pacific Islander (1%), White (81 %), and multiracial (4 %). Results show that most (38%) E/CS students reported participating in internships, while study abroad programs garnered the smallest level of E/CS student participation (5%) across all five HIP. Internships were found most likely to engage diverse students: Female (42%), Hispanic or Latinx (24%), Multiracial (44%), Asian (31%), First-generation (29%), and nontraditional students—other than those categorized as highly nontraditional—all reported participating in internships more than any other HIP. Notable differences in participation across E/CS and demographic groups were found for other HIPs. Results further revealed that 43% of respondents did not participate in any extracurricular HIP and only 19% participated in two or more HIP. Insights derived from the survey and used to inform ongoing quantitative and qualitative analyses are discussed. Keywords: community-based learning, high impact educational practices, HIP, internships learning communities, service learning, study aboard, undergraduate research 
    more » « less
  5. Many historically minoritized graduate students, here defined as Women, Latinx and Black/African American students, in Science, Technology, Engineering and Math (STEM) experience unwelcome or even hostile ecosystems or environments. Many of the social expectations are that historically minoritized graduate students in STEM should assimilate or acclimate to the cultural, where assimilation/acclimation are defined as cultural conformation vs. social acceptance of a student authentic self/identity. They may also experience forms of continuous microaggressions and isolation. The effects of chronic external stressors, such as experiencing discrimination and social isolation, on increased mental health disorders and decreased physiological health is well known [1-3]. Yet, evidence-based practices of support systems specifically for graduate students from historically marginalized communities to reduce the effects of climates of intimidation are not common. Indeed, researchers have found that such students “would benefit if colleges and universities attempted to deconstruct climates of intimidation [4]” and it has also been shown that teaching underrepresented minority students empowerment skills can improve academic success [5]. Self-advocacy originates from the American Counseling Association (ACA) and the Learning Disabilities (LD) communities for effective counseling that promotes academic success and is based on a social justice framework [6]. The underlying principle of self-advocacy is that supporting skills and knowledge development in the three areas of self-advocacy leads to a student’s long term participation and ultimately academic success in areas such as post-secondary education and STEM. The pillars of the self-advocacy program are centered on (i) Empowerment, (ii) Promoting self-awareness and (iii) Social Justice and programming in the GRaduate Education for Academically Talented Students (GREATS) is aligned and repeated along these three pillars. The current professional development program is in its third year of implementation and to date twenty-seven students have participated in the program. This work in progress paper outlines the evaluation of a self-advocacy program for historically marginalized graduate students in STEM at the University of Illinois Chicago is a minority serving institution as both an Hispanic Serving Institution (HSI) and an Asian American Native American Pacific Islander Serving Institution (AANAPISI). [1] S. Stansfeld and B. Candy, "Psychosocial work environment and mental health--a meta-analytic review," ed, 2006. [2] E. M. Smith, "Ethnic minorities: Life stress, social support, and mental health issues," The Counseling Psychologist, vol. 13, no. 4, pp. 537-579, 1985. [3] D. M. Frost, K. Lehavot, and I. H. Meyer, "Minority stress and physical health among sexual minority individuals," Journal of behavioral medicine, vol. 38, no. 1, pp. 1-8, 2015. [4] R. T. Palmer, D. C. Maramba, and T. E. Dancy, "A Qualitative Investigation of Factors Promoting the Retention and Persistence of Students of Color in STEM," The Journal of Negro Education, vol. 80, no. 4, pp. 491-504, 2011. [Online]. Available: http://www.jstor.org/stable/41341155. [5] A. R. Dowden, "Implementing Self-Advocacy Training Within a Brief Psychoeducational Group to Improve the Academic Motivation of Black Adolescents," The Journal for Specialists in Group Work, vol. 34, no. 2, pp. 118-136, 2009/04/28 2009, doi: 10.1080/01933920902791937. 
    more » « less