Abstract A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. Thetrans‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1), ‐C6H4‐4‐tBu (2), ‐C6H4‐4‐NO2(3 a), andN‐mesityl‐1,8‐naphthalimide or NAPMes(4 a)) in the presence of Et3N. The intermediate complexes of the typetrans‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 band4 b, were obtained by treating3 aand4 a, respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans‐[Co(TIM)(C2R)2]PF6complexes,3 cand4 c, were generated following a second dehydrohalogenation reaction between3 band4 b, respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2,3 a,4 a, and4 c), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c), and cyclic voltammetry. 
                        more » 
                        « less   
                    
                            
                            Access to Heteroleptic Fluorido‐Cyanido Complexes with a Large Magnetic Anisotropy by Fluoride Abstraction
                        
                    
    
            Abstract Silicon‐mediated fluoride abstraction is demonstrated as a means of generating the first fluorido‐cyanido transition metal complexes. This new synthetic approach is exemplified by the synthesis and characterization of the heteroleptic complexes,trans‐[MIVF4(CN)2]2−(M=Re, Os), obtained from their homoleptic [MIVF6]2−parents. As shown by combined high‐field electron paramagnetic resonance spectroscopy and magnetization measurements, the partial substitution of fluoride by cyanide ligands leads to a marked increase in the magnetic anisotropy oftrans‐[ReF4(CN)2]2−as compared to [ReF6]2−, reflecting the severe departure from an ideal octahedral (Ohpoint group) ligand field. This methodology paves the way toward the realization of new heteroleptic transition metal complexes that may be used as highly anisotropic building‐blocks for the design of high‐performance molecule‐based magnetic materials. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1800252
- PAR ID:
- 10144756
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 59
- Issue:
- 26
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 10306-10310
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The first consistent series of mononuclear 17‐electron complexes of three Group 7 elements has been isolated in crystalline form and studied by X‐ray diffraction and spectroscopic methods. The paramagnetic compounds have a composition of [M0(CO)(CNp‐F‐ArDArF2)4] (M=Mn, Tc, Re; ArDArF2=2,6‐(3,5‐(CF3)2C6H3)2C6H2F) and are stabilized by four sterically encumbering isocyanides, which prevent the metalloradicals from dimerization. They have a square pyramidal structure with the carbonyl ligands as apexes. The frozen‐solution EPR spectra of the rhenium and technetium compounds are clearly anisotropic with large99Tc and185,187Re hyperfine interactions for one component. High‐field EPR (Q band and W band) has been applied for the elucidation of the EPR parameters of the manganese(0) complex.more » « less
- 
            Abstract Searching for a connection between the two‐electron redox behavior of Group‐14 elements and their possible use as platforms for the photoreductive elimination of chlorine, we have studied the photochemistry of [(o‐(Ph2P)C6H4)2GeIVCl2]PtIICl2and [(o‐(Ph2P)C6H4)2ClGeIII]PtIIICl3, two newly isolated isomeric complexes. These studies show that, in the presence of a chlorine trap, both isomers convert cleanly into the platinum germyl complex [(o‐(Ph2P)C6H4)2ClGeIII]PtICl with quantum yields of 1.7 % and 3.2 % for the GeIV–PtIIand GeIII–PtIIIisomers, respectively. Conversion of the GeIV–PtIIisomer into the platinum germyl complex is a rare example of a light‐induced transition‐metal/main‐group‐element bond‐forming process. Finally, transient‐absorption‐spectroscopy studies carried out on the GeIII–PtIIIisomer point to a ligand arene–Cl.charge‐transfer complex as an intermediate.more » « less
- 
            Abstract Coordination complexes of general formulatrans‐[MX2(R2ECH2CH2ER2)2] (MII=Ti, V, Cr, Mn; E=N or P; R=alkyl or aryl) are a cornerstone of coordination and organometallic chemistry. We investigate the electronic properties of two such complexes,trans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2], which thus representtrans‐[MX2(R2ECH2CH2ER2)2] where M=V, X=Cl, R=Me and E=N (tmeda) and P (dmpe). These VIIcomplexes haveS=3/2 ground states, as expected for octahedral d3. Their tetragonal distortion leads to zero‐field splitting (zfs) that is modest in magnitude (D≈0.3 cm−1) relative to analogousS=1 TiIIand CrIIcomplexes. This parameter was determined from conventional EPR spectroscopy, but more effectively from high‐frequency and ‐field EPR (HFEPR) that determined the sign ofDas negative for the diamine complex, but positive for the diphosphine, which information had not been known for anytrans‐[VX2(R2ECH2CH2ER2)2] systems. The ligand‐field parameters oftrans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2] are obtained using both classical theory andab initioquantum chemical theory. The results shed light not only on the electronic structure of VIIin this environment, but also on differences between N and P donor ligands, a key comparison in coordination chemistry.more » « less
- 
            Abstract As part of our efforts to interface late transition metals with Lewis acidic main group fragments, we have decided to investigate gold complexes bearing halogermanes as Z‐type ligands. Toward this end, we have synthesized complexes of general formula [(o‐(Ph2P)C6H4)2(Ph)(X)GeAuCl] (X = F, Cl). Experimental and computational analyses indicate the presence of an Au→Ge interaction in both cases. Chloride abstraction reactions have also been investigated. In the case of X = Cl, double chloride abstraction with AgSbF6affords a putative dication that gradually abstracts fluoride from its counterion. This putative dication is also significantly more active as a catalyst than its monocationic analog in alkyne hydroamination reactions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
