skip to main content


Title: Lipids help double‐stranded RNA in endosomal escape and improve RNA interference in the fall armyworm, Spodoptera frugiperda
Abstract

RNA interference (RNAi) is a valuable method for understanding the gene function and holds great potential for insect pest management. While RNAi is efficient and systemic in coleopteran insects, RNAi is inefficient in lepidopteran insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW),Spodoptera frugiperdacells by formulating dsRNA with Cellfectin II (CFII) transfection reagent. The CFII formulated dsRNA was protected from degradation by endonucleases present in Sf9 cells conditioned medium, hemolymph and midgut lumen contents collected from the FAW larvae. Lipid formulated dsRNA also showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing Sf9 cells and tissues to CFII formulated dsRNA caused a significant knockdown of endogenous genes. CFII formulated dsIAP fed to FAW larvae induced knockdown ofiapgene, growth retardation and mortality. Processing of dsRNA into siRNA was detected in Sf9 cells andSpodoptera frugiperdalarvae treated with CFII conjugated32P‐UTP labeled dsGFP. Overall, the present study concluded that delivering dsRNA formulated with CFII transfection reagent helps dsRNA escapes from the endosomal accumulation and improved RNAi efficiency in the FAW cells and tissues.

 
more » « less
Award ID(s):
1821936
NSF-PAR ID:
10144881
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Archives of Insect Biochemistry and Physiology
Volume:
104
Issue:
4
ISSN:
0739-4462
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    RNA interference (RNAi) is a promising technology for the development of next‐generation insect pest control products. Though RNAi is efficient and systemic in coleopteran insects, it is inefficient and variable in lepidopteron insects. In this study, we explored the possibility of improving RNAi in the fall armyworm (FAW),Spodoptera frugiperdaby conjugating double‐stranded RNA (dsRNA) with biodegradable chitosan (Chi). dsRNA conjugated with chitosan was protected from degradation by endonucleases present in Sf9 cell‐conditioned medium, hemolymph, and midgut lumen contents collected from the FAW larvae. Chi–dsRNA complexes showed reduced accumulation in the endosomes of Sf9 cells and FAW tissues. Exposing chitosan formulated dsRNA in Sf9 cells and the tissues induced a significant knockdown of endogenous genes. Chi–dsIAP fed to FAW larvae induced knockdown ofiapgene, growth retardation, and mortality. Processing of dsRNA into small interfering RNA was detected with chitosan‐conjugated32P‐UTP‐labeled ds green fluorescent protein in Sf9 cells and FAW larval tissues. Overall, these data suggest that dsRNA conjugated with chitosan helps dsRNA escape from the endosomes and improves RNAi efficiency in FAW cells and tissues.

     
    more » « less
  2. Abstract BACKGROUND

    Calmodulin (CaM) is an essential protein in cellular activity and plays important roles in many processes in insect development. RNA interference (RNAi) has been hypothesized to be a promising method for pest control. CaM is a good candidate for RNAi target. However, the sequence and function of CaM inNilaparvata lugensare unknown. Furthermore, the double‐stranded RNA (dsRNA) target to CaM gene in pest control is still unavailable.

    RESULTS

    In the present study, two alternatively spliced variants ofCaMtranscripts, designatedNlCaM1andNlCaM2, were cloned fromN. lugens. The two cDNA sequences exhibited 100% identity to each other in the open reading frame (ORF), and only differed in the 3′ untranslated region (UTR).NlCaMincludingNlCaM1andNlCaM2mRNA was detectable in all developmental stages and tissues ofN. lugens, with significantly increased expression in the salivary glands. Knockdown ofNlCaMexpression by RNAi with different dsRNAs led to an inability to molt properly, increased mortality, which ranged from 49.7 to 92.5%, impacted development of the ovaries and led to female infertility. There were no significant reductions in the transcript levels of vitellogenin and its receptor or in the total vitellogenin protein level relative to the control group. However, a significant reduction in vitellogenin protein was detected in ovaries injected with dsNlCaM. In addition, a specific dsRNA ofNlCaMfor control ofN. lugenswas designed and tested.

    CONCLUSION

    NlCaMplays important roles mainly in nymph development and uptake of vitellogenin by ovaries in vitellogenesis inN. lugens. dsRNA derived from the less conserved 3′‐UTR ofNlCaMshows great potential for RNAi‐basedN. lugensmanagement. © 2018 Society of Chemical Industry

     
    more » « less
  3. ABSTRACT The endosomal sorting complex required for transport (ESCRT) machinery is necessary for budding of many enveloped viruses. Recently, it was demonstrated that Vps4, the key regulator for recycling of the ESCRT-III complex, is required for efficient infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, ESCRT assembly, regulation, and function are complex, and little is known regarding the details of participation of specific ESCRT complexes in AcMNPV infection. In this study, the core components of ESCRT-I (Tsg101 and Vps28) and ESCRT-III (Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60) were cloned from Spodoptera frugiperda . Using a viral complementation system and RNA interference (RNAi) assays, we found that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. In cells knocking down or overexpressing dominant negative (DN) forms of the components of ESCRT-I and ESCRT-III complexes, entering virions were partially trapped within the cytosol. To examine only egress, cells were transfected with the double-stranded RNA (dsRNA) targeting an individual ESCRT-I or ESCRT-III gene and viral bacmid DNA or viral bacmid DNA that expressed DN forms of ESCRT-I and ESCRT-III components. We found that ESCRT-III components (but not ESCRT-I components) are required for efficient nuclear egress of progeny nucleocapsids. In addition, we found that several baculovirus core or conserved proteins (Ac11, Ac76, Ac78, GP41, Ac93, Ac103, Ac142, and Ac146) interact with Vps4 and components of ESCRT-III. We propose that these viral proteins may form an “egress complex” that is involved in recruiting ESCRT-III components to a virus egress domain on the nuclear membrane. IMPORTANCE The ESCRT system is hijacked by many enveloped viruses to mediate budding and release. Recently, it was found that Vps4, the key regulator of the cellular ESCRT machinery, is necessary for efficient entry and egress of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, little is known about the roles of specific ESCRT complexes in AcMNPV infection. In this study, we demonstrated that ESCRT-I and ESCRT-III complexes are required for efficient entry of AcMNPV into insect cells. The components of ESCRT-III (but not ESCRT-I) are also necessary for efficient nuclear egress of progeny nucleocapsids. Several baculovirus core or conserved proteins were found to interact with Vps4 and components of ESCRT-III, and these interactions may suggest the formation of an “egress complex” involved in the nuclear release or transport of viral nucleocapsids. 
    more » « less
  4. Abstract

    Apoptosis has been widely studied from mammals to insects. Inhibitor of apoptosis (IAP) protein is a negative regulator of apoptosis. Recent studies suggest thatiapgenes could be excellent targets for RNA interference (RNAi)‐mediated control of insect pests. However, not much is known aboutiapgenes in one of the well‐known insect model species,Tribolium castaneum. The orthologues of fiveiapgenes were identified inT. castaneumby searching its genome at NCBI (https://www.ncbi.nlm.nih.gov/) and UniProt (https://www.uniprot.org/) databases usingDrosophila melanogasterandAedes aegyptiIAP protein sequences as queries. RNAi assays were performed inT. castaneumcell line (TcA) and larvae. The knockdown ofiap1gene induced a distinct apoptotic phenotype in TcA cells and induced 91% mortality inT. castaneumlarvae. Whereas, knockdown ofiap5resulted in a decrease in cell proliferation in TcA cells and developmental defects inT. castaneumlarvae which led to 100% mortality. Knockdown of the other threeiapgenes identified did not cause a significant effect on cells or insects. These data increase our understanding ofiapgenes in insects and provide opportunities for developingiap1andiap5as targets for RNAi‐based insect pest control.

     
    more » « less
  5. Abstract

    The E93 transcription factor is a member of helix‐turn‐helix transcription factor family containing a Pip‐squeak motif. This ecdysone primary response gene was identified as a regulator of cell death inDrosophila melanogasterwhere it is involved in ecdysone‐induced autophagy and caspase activity that mediate degeneration of larval tissues during metamorphosis from larva to pupa. However, its function in adult insects is not well studied. To study E93 function in the red flour beetle,Tribolium castaneum, double‐stranded RNA (dsRNA) targeting E93 (dsE93) was injected into newly emerged adults. Knockdown of E93 caused a decrease in the synthesis of vitellogenin (Vg), oocyte development, and egg‐laying. Sequencing of RNA isolated from adults injected with dsE93 and controldsmalE(dsRNA targetingEscherichia coli malEgene) followed by differential gene expression analysis showed upregulation of genes involved in the metabolism of reserved nutrients.E93knockdown induced changes in gene expression resulted in a decrease in Vg synthesis in the fat body and oocyte maturation in ovaries. Mating experiments showed that females injected with dsE93 did not lay eggs. Knockdown ofE93caused a reduction in the number and size of lipid droplets in the fat body when compared with that in control beetles injected withdsmalE. These data suggest that during the first 2–3 days after the emergence of adult females, E93 suppresses genes coding for enzymes that metabolize reserved nutrients until initiation of vitellogenesis and oogenesis.

     
    more » « less