skip to main content


Title: Strain‐Enhanced Metallic Intermixing in Shape‐Controlled Multilayered Core–Shell Nanostructures: Toward Shaped Intermetallics
Abstract

Controlling the surface composition of shaped bimetallic nanoparticles could offer precise tunability of geometric and electronic surface structure for new nanocatalysts. To achieve this goal, a platform for studying the intermixing process in a shaped nanoparticle was designed, using multilayered Pd‐Ni‐Pt core–shell nanocubes as precursors. Under mild conditions, the intermixing between Ni and Pt could be tuned by changing layer thickness and number, triggering intermixing while preserving nanoparticle shape. Intermixing of the two metals is monitored using transmission electron microscopy. The surface structure evolution is characterized using electrochemical methanol oxidation. DFT calculations suggest that the low‐temperature mixing is enhanced by shorter diffusion lengths and strain introduced by the layered structure. The platform and insights presented are an advance toward the realization of shape‐controlled multimetallic nanoparticles tailored to each potential application.

 
more » « less
PAR ID:
10144888
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
132
Issue:
26
ISSN:
0044-8249
Format(s):
Medium: X Size: p. 10661-10667
Size(s):
p. 10661-10667
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Controlling the surface composition of shaped bimetallic nanoparticles could offer precise tunability of geometric and electronic surface structure for new nanocatalysts. To achieve this goal, a platform for studying the intermixing process in a shaped nanoparticle was designed, using multilayered Pd‐Ni‐Pt core–shell nanocubes as precursors. Under mild conditions, the intermixing between Ni and Pt could be tuned by changing layer thickness and number, triggering intermixing while preserving nanoparticle shape. Intermixing of the two metals is monitored using transmission electron microscopy. The surface structure evolution is characterized using electrochemical methanol oxidation. DFT calculations suggest that the low‐temperature mixing is enhanced by shorter diffusion lengths and strain introduced by the layered structure. The platform and insights presented are an advance toward the realization of shape‐controlled multimetallic nanoparticles tailored to each potential application.

     
    more » « less
  2. Abstract

    The nucleation and growth of nanoparticles are critical processes determining the size, shape, and properties of resulting nanoparticles. However, understanding the complex mechanisms guiding the formation and growth of colloidal multielement alloy nanoparticles remains incomplete due to the involvement of multiple elements with different properties. This study investigates in situ colloidal synthesis of multielement alloys using transmission electron microscopy (TEM) in a liquid cell. Two different pathways for nanoparticle formation in a solution containing Au, Pt, Ir, Cu, and Ni elements, resulting in two distinct sets of particles are observed. One set exhibits high Au and Cu content, ranging from 10 to 30 nm, while the other set is multi‐elemental, with Pt, Cu, Ir, and Ni, all less than 4 nm. The findings suggest that, besides element miscibility, metal ion characteristics, particularly reduction rates, and valence numbers, significantly impact particle composition during early formation stages. Density functional theory (DFT) simulations confirm differences in nanoparticle composition and surface properties collectively influence the unique growth behaviors in each nanoparticle set. This study illuminates mechanisms underlying the formation and growth of multielement nanoparticles by emphasizing factors responsible for chemical separation and effects of interplay between composition, surface energies, and element miscibility on final nanoparticles size and structure.

     
    more » « less
  3. Abstract

    Dilute alloy CuPt and NiPt catalysts are studied in the hydrogenation of citral, a model α,β‐unsaturated aldehyde.In situandex situcharacterization is used to demonstrate that the Pt species within these nanoparticles are well dispersed and approach a single atom alloy structure. The distribution of Pt varies between the two host metal systems; under a hydrogen environment, the nanoparticle surface and near‐surface region of the NiPt nanoparticles is Pt rich, while the Pt is more uniformly distributed throughout the CuPt nanoparticles. When used for citral hydrogenation reactions, a rate enhancement is observed upon the addition of Pt to the Cu or Ni host catalysts, however this enhancement is determined to be due to the presence of additional metal and not a synergistic effect of the two metals. The Pt structure does, nonetheless, influence the observed selectivity trends. NiPt/SiO2catalysts have high selectivity to the unsaturated aldehyde citronellal while the CuPt/SiO2catalysts have increased selectivity to unsaturated alcohol products. This increased selectivity is attributed to a combination of hydrogen dissociation over Pt sites and a decrease in size of Cu ensembles due to the presence of Pt, which favors binding and hydrogenation of C=O rather than C=C bonds.

     
    more » « less
  4. In the context of metal particle catalysts, composition, shape, exposed facets, crystal structure, and atom distribution dictate activity. While techniques have been developed to control each of these parameters, there is no general method that allows one to optimize all parameters in the context of polyelemental systems. Herein, by combining a solid-state, Bi-influenced, high-index facet shape regulation strategy with thermal annealing, we achieve control over crystal structure and atom distribution on the exposed high-index facets, resulting in an unprecedentedly diverse library of chemically disordered and ordered multimetallic (Pt, Co, Ni, Cu, Fe, and Mn) tetrahexahedral (THH) nanoparticles. Density functional theory calculations show that surface Bi modification stabilizes the {210} high-index facets of the nanoparticles, regardless of their internal atomic ordering. Moreover, we find that the ordering transition temperatures for the nanoparticles are dependent on their composition, and, in the case of Pt3Fe1THH nanoparticles, increasing Ni substitution leads to an order-to-disorder transition at 900 °C. Finally, we have discovered that ordered intermetallic THH Pt1Co1nanocatalysts exhibit a catalytic performance superior to disordered THH Pt1Co1nanoparticles and commercial Pt/C catalysts toward methanol electrooxidation, highlighting the importance of crystal structure and atom distribution control on high-index facets in nanoscale catalysts.

     
    more » « less
  5. Abstract

    Understanding the growth pathway of faceted alloy nanoparticles at the atomic level is crucial to morphology control and property tuning. Yet, it remains a challenge due to complexity of the growth process and technical limits of modern characterization tools. We report a combinational use of multiple cutting-edge in situ techniques to study the growth process of octahedral Pt3Ni nanoparticles, which reveal the particle growth and facet formation mechanisms. Our studies confirm the formation of octahedral Pt3Ni initiates from Pt nuclei generation, which is followed by continuous Pt reduction that simultaneously catalyzes Ni reduction, resulting in mixed alloy formation with moderate elemental segregation. Carbon monoxide molecules serve as a facet formation modulator and induce Ni segregation to the surface, which inhibits the (111) facet growth and causes the particle shape to evolve from a spherical cluster to an octahedron as the (001) facet continues to grow.

     
    more » « less