skip to main content


Title: Reliance on science: Worldwide front‐page patent citations to scientific articles
Abstract <italic>Research summary</italic>

To what extent do firms rely on basic science in their R&D efforts? Several scholars have sought to answer this and related questions, but progress has been impeded by the difficulty of matching unstructured references in patents to published papers. We introduce an open‐access dataset of references from the front pages of patents granted worldwide to scientific papers published since 1800. Each patent‐paper linkage is assigned a confidence score, which is characterized in a random sample by false negatives versus false positives. All matches are available for download athttp://relianceonscience.org. We outline several avenues for strategy research enabled by these new data.

<italic>Managerial summary</italic>

To what extent do firms rely on basic science in their R&D efforts? Several scholars have sought to answer this and related questions, but progress has been impeded by the difficulty of matching unstructured references in patents to published papers. We introduce an open‐access dataset of references from the front pages of patents granted worldwide to scientific papers published since 1800. Each patent‐paper linkage is assigned a confidence score, and we check a random sample of these confidence scores by hand in order to estimate both coverage (i.e., of the matches we should have found, what percentage did we find) and accuracy (i.e., of the matches we found, what percentage are correct). We outline several avenues for strategy research enabled by these new data.

 
more » « less
Award ID(s):
1735669
NSF-PAR ID:
10145028
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Strategic Management Journal
Volume:
41
Issue:
9
ISSN:
0143-2095
Page Range / eLocation ID:
p. 1572-1594
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This article analyzes how patent-induced shocks to labor productivity propagate into worker compensation using a new linkage of U.S. patent applications to U.S. business and worker tax records. We infer the causal effects of patent allowances by comparing firms whose patent applications were initially allowed to those whose patent applications were initially rejected. To identify patents that are ex ante valuable, we extrapolate the excess stock return estimates of Kogan et al. (2017) to the full set of accepted and rejected patent applications based on predetermined firm and patent application characteristics. An initial allowance of an ex ante valuable patent generates substantial increases in firm productivity and worker compensation. By contrast, initial allowances of lower ex ante value patents yield no detectable effects on firm outcomes. Patent allowances lead firms to increase employment, but entry wages and workforce composition are insensitive to patent decisions. On average, workers capture roughly 30 cents of every dollar of patent-induced surplus in higher earnings. This share is roughly twice as high among workers present since the year of application. These earnings effects are concentrated among men and workers in the top half of the earnings distribution and are paired with corresponding improvements in worker retention among these groups. We interpret these earnings responses as reflecting the capture of economic rents by senior workers, who are most costly for innovative firms to replace. 
    more » « less
  2. Patents are key strategic resources which enable firms to appropriate innovation returns and prevent rival imitation. Patent examiners – individuals who may be subject to various sources of bias – play a central role in determining which inventions are awarded patent rights. Using a novel dataset, we explore if one increasingly prevalent source of bias – political ideology – manifests in examiner decision-making. Reassuringly, our analysis suggests that the political ideology of patent examiners is largely unrelated to patent office outcomes. However, we do find evidence suggesting politically active conservative-leaning examiners are more likely to grant patents relative to politically active liberal-leaning examiners, but only for patent applications where there is ambiguity regarding what constitutes patentable subject matter and hence examiners have greater discretion. 
    more » « less
  3. Abstract

    FlyBase (www.flybase.org) is the primary online database of genetic, genomic, and functional information aboutDrosophila melanogaster. The long and rich history ofDrosophilaresearch, combined with recent surges in genomic‐scale and high‐throughput technologies, means that FlyBase now houses a huge quantity of data. Researchers need to be able to query these data rapidly and intuitively, and the QuickSearch tool has been designed to meet these needs. This tool is conveniently located on the FlyBase homepage and is organized into a series of simple tabbed interfaces that cover the major data and annotation classes within the database. This article describes the functionality of all aspects of the QuickSearch tool. With this knowledge, FlyBase users will be equipped to take full advantage of all QuickSearch features and thereby gain improved access to data relevant to their research. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.

    Basic Protocol 1: Using the “Search FlyBase” tab of QuickSearch

    Basic Protocol 2: Using the “Data Class” tab of QuickSearch

    Basic Protocol 3: Using the “References” tab of QuickSearch

    Basic Protocol 4: Using the “Gene Groups” tab of QuickSearch

    Basic Protocol 5: Using the “Pathways” tab of QuickSearch

    Basic Protocol 6: Using the “GO” tab of QuickSearch

    Basic Protocol 7: Using the “Protein Domains” tab of QuickSearch

    Basic Protocol 8: Using the “Expression” tab of QuickSearch

    Basic Protocol 9: Using the “GAL4 etc” tab of QuickSearch

    Basic Protocol 10: Using the “Phenotype” tab of QuickSearch

    Basic Protocol 11: Using the “Human Disease” tab of QuickSearch

    Basic Protocol 12: Using the “Homologs” tab of QuickSearch

    Support Protocol 1: Managing FlyBase hit lists

     
    more » « less
  4. The United States (US) and the People’s Republic of China (China) have the most patents in nanotechnology in their own depositories and overall in the international depositories. This paper compares nanotechnology landscapes between 2001 and 2017 as reflected in the United States Patent and Trademark Office (USPTO) and China National Intellectual Property Administration (CNIPA). It presents the evolution of nanotechnology patent development in the US and China, the differences between nanotechnology topics addressed in the USPTO and CNIPA patents, key players in nanotechnology fields in both domestic and foreign markets, and the player collaboration patterns. Bibliographic, content, and social network analyses are used. The longitudinal changes of granted patents and ranked countries, patent families, technology fields, and key players in domestic and overseas markets are outlined. Collaboration networks of assignees and the influential players have been identified based on network parameters. Results show that the US market attracts more international collaborations and has a higher level of knowledge exchange and resource sharing than the Chinese market. Companies play a vital role with regard to US nanotechnology development, resulting in more within-industry collaborations. In contrast, universities and research institutes are the dominant contributors to China’s nanotechnology development, leading to more academia-industry collaborations in China’s market. 
    more » « less
  5. Abstract Background

    Sequencing partial 16S rRNA genes is a cost effective method for quantifying the microbial composition of an environment, such as the human gut. However, downstream analysis relies on binning reads into microbial groups by either considering each unique sequence as a different microbe, querying a database to get taxonomic labels from sequences, or clustering similar sequences together. However, these approaches do not fully capture evolutionary relationships between microbes, limiting the ability to identify differentially abundant groups of microbes between a diseased and control cohort. We present sequence-based biomarkers (SBBs), an aggregation method that groups and aggregates microbes using single variants and combinations of variants within their 16S sequences. We compare SBBs against other existing aggregation methods (OTU clustering andMicrophenoorDiTaxafeatures) in several benchmarking tasks: biomarker discovery via permutation test, biomarker discovery via linear discriminant analysis, and phenotype prediction power. We demonstrate the SBBs perform on-par or better than the state-of-the-art methods in biomarker discovery and phenotype prediction.

    Results

    On two independent datasets, SBBs identify differentially abundant groups of microbes with similar or higher statistical significance than existing methods in both a permutation-test-based analysis and using linear discriminant analysis effect size. . By grouping microbes by SBB, we can identify several differentially abundant microbial groups (FDR <.1) between children with autism and neurotypical controls in a set of 115 discordant siblings.Porphyromonadaceae,Ruminococcaceae, and an unnamed species ofBlastocystiswere significantly enriched in autism, whileVeillonellaceaewas significantly depleted. Likewise, aggregating microbes by SBB on a dataset of obese and lean twins, we find several significantly differentially abundant microbial groups (FDR<.1). We observedMegasphaeraandSutterellaceaehighly enriched in obesity, andPhocaeicolasignificantly depleted. SBBs also perform on bar with or better than existing aggregation methods as features in a phenotype prediction model, predicting the autism phenotype with an ROC-AUC score of .64 and the obesity phenotype with an ROC-AUC score of .84.

    Conclusions

    SBBs provide a powerful method for aggregating microbes to perform differential abundance analysis as well as phenotype prediction. Our source code can be freely downloaded fromhttp://github.com/briannachrisman/16s_biomarkers.

     
    more » « less