skip to main content


Title: Optimizing fluid viscosity for systems of multiple hydraulic fractures
Abstract

Optimal hydraulic fracturing stimulations of horizontal oil and gas wells maximize created fracture surface area and/or maximize the uniformity of stimulation. Here, we use a new, rapidly‐computing hydraulic fracture model to investigate how surface area and uniformity are impacted by interplay among multiple growing hydraulic fractures driven through permeable rocks by fluids of various viscosities. The results show the existence of a surface‐area‐optimizing viscosity that is large enough to control leak‐off but not so large that leads to unnecessarily large fracture aperture.

 
more » « less
Award ID(s):
1645246
NSF-PAR ID:
10461475
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
65
Issue:
5
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydraulic fracturing enables oil and gas extraction from low‐permeability reservoirs, but there remains a need to reduce the environmental footprint. Resource use, contaminant‐bearing flowback water, and potential for induced seismicity are all scaled by the volume of injected fluid. Furthermore, the greenhouse gas emissions associated with each extracted unit of energy can be decreased by improving resource recovery. To minimize fluid use while maximizing recovery, a rapidly computing model is developed and validated to enable the thousands of simulations needed to identify opportunities for optimization. Lower pumping pressure approaches that minimize pressure loss through the wellbore perforations combined with nonuniform spacing are shown to be capable of substantially reducing fluid consumption and/or increasing created fracture surface area when the stress variation is mainly from fracture interaction instead of in situ stress. When in situ stress variation is dominant, “limited entry” methods promote more uniform growth but with higher pumping pressures and energy consumption.

     
    more » « less
  2. Abstract

    Dynamic windows allow user control over light and heat flow to save energy and maximize comfort. Reversible metal electrodeposition (RME) dynamic windows can uniquely tint to a color‐neutral privacy state (0.1% visible light transmission). The design parameters of transparent metal mesh counter electrodes for high‐contrast RME dynamic windows: high transparency, charge capacity and surface area with low haze, sheet resistance and cost are discussed, concluding that woven metal meshes meet these design parameters. Electroplated current is measured on an indium tin oxide electrode and two meshes with different wire spacings, showing the meshes’ cylindrical geometry enable them to draw more current per square area. The mesh material composition is analyzed to ensure cycling durability in a CuBi electrolyte by developing a transparent mesh with an inert core (stainless steel, SS), a thin Au coating, and a high charge‐capacity (1.5 C cm−2) CuBi outer coating. The study demonstrates that the films maintain a consistent Cu:Bi ratio and optical properties after 250 privacy cycles or 1500 cycles to 10% transmission, showing that the Cu and Bi coating is effective in keeping the films from becoming Cu rich with cycling. Finally, a 100 cm2device with excellent uniformity and color neutrality is demonstrated.

     
    more » « less
  3. We investigate the influence of bifurcation geometry, asymmetry of daughter airways, surfactant distribution, and physicochemical properties on the uniformity of airway recruitment of asymmetric bifurcating airways. To do so, we developed microfluidic idealized in vitro models of bifurcating airways, through which we can independently evaluate the impact of carina location and daughter airway width and length. We explore the uniformity of recruitment and its relationship to the dynamic surface tension of the lining fluid and relate this behavior to the hydraulic (P Hyd ) and capillary (P Cap ) pressure drops. These studies demonstrate the extraordinary importance of P Cap in stabilizing reopening, even in highly asymmetric systems. The dynamic surface tension of pulmonary surfactant is integral to this stability because it modulates P Cap in a velocity-dependent manner. Furthermore, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, aiding in gas exchange, and reducing ventilator-induced lung injury. NEW & NOTEWORTHY The dynamic surface tension of pulmonary surfactant is integral to the uniformity of asymmetric bifurcation airway recruitments because it modulates capillary pressure drop in a velocity-dependent manner. Also, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, reducing ventilator-induced lung injury. 
    more » « less
  4. Abstract

    In habitats with low water availability, a fundamental challenge for plants will be to maximize photosynthetic C‐gain while minimizing transpirational water‐loss. This trade‐off between C‐gain and water‐loss can in part be achieved through the coordination of leaf‐level photosynthetic and hydraulic traits. To test the relationship of photosynthetic C‐gain and transpirational water‐loss, we grew, under common growth conditions, 18 C4grasses adapted to habitats with different mean annual precipitation (MAP) and measured leaf‐level structural and anatomical traits associated with mesophyll conductance (gm) and leaf hydraulic conductance (Kleaf). The C4grasses adapted to lower MAP showed greater mesophyll surface area exposed to intercellular air spaces (Smes) and adaxial stomatal density (SDada) which supported greater gm. These grasses also showed greater leaf thickness and vein‐to‐epidermis distance, which may lead to lower Kleaf. Additionally, grasses with greater gmand lower Kleafalso showed greater photosynthetic rates (Anet) and leaf‐level water‐use efficiency (WUE). In summary, we identify a suite of leaf‐level traits that appear important for adaptation of C4grasses to habitats with low MAP and may be useful to identify C4species showing greater Anetand WUE in drier conditions.

     
    more » « less
  5. null (Ed.)
    Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection. 
    more » « less