skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CAPTURING A LATE CRETACEOUS PALEOFAUNA: A NEW VERTEBRATE MICROFOSSIL BONEBED IN THE UPPER CRETACEOUS (CAMPANIAN) JUDITH RIVER FORMATION, MONTANA
Award ID(s):
1659322
PAR ID:
10145665
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geological Society of America Abstracts with Programs
ISSN:
0016-7592
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During International Ocean Discovery Program Expedition 392, three sites were drilled on the Agulhas Plateau and one site was drilled in the Transkei Basin in the Southwest Indian Ocean. This region was positioned at paleolatitudes of ~53°–61°S during the Late Cretaceous (van Hinsbergen et al., 2015) (100–66 Ma) and within the new and evolving gateway between the South Atlantic, Southern Ocean, and southern Indian Ocean basins. Recovery of basement rocks and sedimentary sequences from the Agulhas Plateau sites and a thick sedimentary sequence in the Transkei Basin provides a wealth of new data to (1) determine the nature, origin, and bathymetric evolution of the Agulhas Plateau; (2) significantly advance the understanding of how Cretaceous temperatures, ocean circulation, and sedimentation patterns evolved as CO2 levels rose and fell and the breakup of Gondwana progressed; (3) document long- and short-term paleoceanographic variability through the Late Cretaceous and Paleogene; and (4) investigate geochemical interactions between igneous rocks, sediments, and pore waters through the life cycle of a large igneous province (LIP). Importantly, postcruise analysis of Expedition 392 drill cores will allow testing of competing hypotheses concerning Agulhas Plateau LIP formation and the role of deep ocean circulation changes through southern gateways in influencing Late Cretaceous–early Paleogene climate evolution. 
    more » « less
  2. An anatomically preserved moss gametophyte has been discovered in a marine carbonate concretion from the Baculites Hill locality, James Ross Island, Antarctica. The concretion is derived from the Late Cretaceous Beta Member of the Santa Marta Formation, dated as early to middle Campanian (ca. 80 Ma). The moss has actinomorphic stems with alternate branching, spiral, patent leaf arrangement and large numbers of attached rhizoids. The largest stem is 210 mm in diameter with the largest branch measuring up to 3.7 mm long and 90–100 mm wide. Most stems appear to contain a distinct conducting strand. Cross sections show that the leaves are strongly plicate with a simple D-shaped costal anatomy and unistratose laminae typically with bistratose margins. Leaves range from 650–700 mm wide and at least 700 mm long. The costa appears percurrent, 90 mm wide and 55 mm thick. Laminar cells are elongate, rhomboidal, L/W ¼ 5:1. No ornamentation or papillae have been observed on the upper medial cells of the leaf. These fossils show leaf morphology and costal anatomy similar to several orders of acrocarpous mosses, in the Dicranidae including species of the family Rhabdoweisiaceae. While the combination of characters does not fit into any known genus, it suggests that this moss represents a fossil member of the Dicranales s.l. To date, this represents the most completely preserved moss gametophyte from Gondwana. 
    more » « less
  3. null (Ed.)
    The tectonic and paleoceanographic setting of the Great Australian Bight (GAB) and the Mentelle Basin (adjacent to Naturaliste Plateau) offered an opportunity to investigate Cretaceous and Cenozoic climate change and ocean dynamics during the last phase of breakup among remnant Gondwana continents. Sediment recovered from sites in both regions during International Ocean Discovery Program Expedition 369 will provide a new perspective on Earth’s temperature variation at subpolar latitudes (60°–62°S) across the extremes of the mid-Cretaceous hot greenhouse climate and the cooling that followed. Basalts and prebreakup sediments were also recovered and will provide constraints regarding the type and age of the Mentelle Basin basement and processes operating during the break up of Gondwana. The primary goals of the expedition were to 1. Investigate the timing and causes for the rise and collapse of the Cretaceous hot greenhouse climate and how this climate mode affected the climate–ocean system and oceanic biota; 2. Determine the relative roles of productivity, ocean temperature, and ocean circulation at high southern latitudes during Cretaceous oceanic anoxic events (OAEs); 3. Investigate potential source regions for deep-water and intermediate-water masses in the southeast Indian Ocean and how these changed during Gondwana breakup; 4. Characterize how oceanographic conditions at the Mentelle Basin changed during the Cenozoic opening of the Tasman Gateway and restriction of the Indonesian Gateway; and 5. Resolve questions on the volcanic and sedimentary origins of the Australo-Antarctic Gulf and Mentelle Basin and provide stratigraphic control on the age and nature of the prebreakup successions. Hole U1512A in the GAB recovered a 691 m thick sequence of black claystone ranging from the lower Turonian to the lower Campanian. Age control is primarily based on calcareous nannofossils, but the presence of other microfossil groups provided consistent low-resolution control. Despite the lithologic uniformity, long- and short-term variations in natural gamma radiation and magnetic susceptibility show cyclic alternations that suggest an orbital control of sediment deposition, which will be useful for developing an astrochronology for the sequence. Sites U1513, U1514, U1515, and U1516 were drilled in water depths between 850 and 3900 m in the Mentelle Basin and penetrated 774, 517, 517, and 542 meters below seafloor, respectively. Under a thin layer of Pleistocene to upper Miocene sediment, Site U1513 cored a succession of Cretaceous units from the Campanian to the Valanginian, as well as a succession of basalts. Site U1514 sampled an expanded Pleistocene to Eocene sequence and terminated in the upper Albian. The Cenomanian to Turonian interval at Site U1514 is represented by deformed sedimentary rocks that probably represent a detachment zone. Site U1515 is located on the west Australian margin at 850 m water depth and was the most challenging site to core because much of the upper 350 m was either chert or poorly consolidated sand. However, the prebreakup Jurassic(?) sediments interpreted from the seismic profiles were successfully recovered. Site U1516 cored an expanded Pleistocene, Neogene, and Paleogene section and recovered a complete Cenomanian/Turonian boundary interval containing five layers with high organic carbon content. Study of the well-preserved calcareous microfossil assemblages from different paleodepths will enable generation of paleotemperature and biotic records that span the rise and collapse of the Cretaceous hot greenhouse (including OAEs 1d and 2), providing insight to resultant changes in deep-water and surface water circulation that can be used to test predictions from earth system models. Measurements of paleotemperature proxies and other data will reveal the timing, magnitude, and duration of peak hothouse conditions and any cold snaps that could have allowed growth of a polar ice sheet. The sites contain a record of the mid-Eocene to early Oligocene opening of the Tasman Gateway and the Miocene to Pliocene restriction of the Indonesian Gateway; both passages have important effects on global oceanography and climate. Advancing understanding of the paleoceanographic changes in a regional context will provide a global test on models of Cenomanian to Turonian oceanographic and climatic evolution related both to extreme Turonian warmth and the evolution of OAE 2. The Early Cretaceous volcanic rocks and underlying Jurassic(?) sediments cored in different parts of the Mentelle Basin provide information on the timing of different stages of the Gondwana breakup. The recovered cores provide sufficient new age constraints to underpin a reevaluation of the basin-wide seismic stratigraphy and tectonic models for the region. 
    more » « less