Kynurenine 3-monoxygenase (KMO) catalyzes the conversion of L-kynurenine (L-Kyn) to 3-hydroxykynurenine (3-OHKyn) in the pathway for tryptophan catabolism. We have investigated the effects of pH and deuterium substitution on the oxidative half-reaction of KMO from P. fluorescens (PfKMO). The three phases observed during the oxidative half reaction are formation of the hydroperoxyflavin, hydroxylation and product release. The measured rate constants for these phases proved largely unchanging with pH, suggesting that the KMO active site is insulated from exchange with solvent during catalysis. A solvent inventory study indicated that a solvent isotope effect of 2 - 3 is observed for the hydroxylation phase and that two or more protons are in flight during this step. An inverse isotope effect of 0.84 0.01 on the rate constant for the hydroxylation step with ring perdeutero-L-Kyn as a substrate indicates a shift from sp2 to sp3 hybridization in the transition state leading to the formation of a non-aromatic intermediate. The pH dependence of transient state data collected for the substrate analog meta-nitrobenzoylalanine indicate that groups proximal to the hydroperoxyflavin are titrated in the range pH 5 - 8.5 and can be described by a pKa of 8.8. That the higher pH values do not slow the rate of hydroxylation precludes that the pKa measured pertains to the proton of the hydroperoxflavin. Together, these observations indicate that the C4a-hydroperoxyflavin has a pKa >> 8.5, that a non-aromatic species is the immediate product of hydroxylation and that at least two solvent derived protons are in-flight during oxygen insertion to the substrate aromatic ring. A unifying mechanistic proposal for these observations is proposed.
more »
« less
Inverse Solvent Isotope Effects in Enzyme-Catalyzed Reactions
Solvent isotope effects have long been used as a mechanistic tool for determining enzyme mechanisms. Most commonly, macroscopic rate constants such as kcat and kcat/Km are found to decrease when the reaction is performed in D2O for a variety of reasons including the transfer of protons. Under certain circumstances, these constants are found to increase, in what is termed an inverse solvent kinetic isotope effect (SKIE), which can be a diagnostic mechanistic feature. Generally, these phenomena can be attributed to an inverse solvent equilibrium isotope effect on a rapid equilibrium preceding the rate-limiting step(s). This review surveys inverse SKIEs in enzyme-catalyzed reactions by assessing their underlying origins in common mechanistic themes. Case studies for each category are presented, and the mechanistic implications are put into context. It is hoped that readers may find the illustrative examples valuable in planning and interpreting solvent isotope effect experiments.
more »
« less
- Award ID(s):
- 1808449
- PAR ID:
- 10145805
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 25
- Issue:
- 8
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 1933
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Catalytic constant (Kcat) is to describe the efficiency of catalyzing reactions. The Kcat value of an enzyme-substrate pair indicates the rate an enzyme converts saturated substrates into product during the catalytic process. However, it is challenging to construct robust prediction models for this important property. Most of the existing models, including the one recently published by Nature Catalysis (Li et al.), are suffering from the overfitting issue. In this study, we proposed a novel protocol to construct Kcat prediction models, introducing an intermedia step to separately develop substrate and protein processors. The substrate processor leverages analyzing Simplified Molecular Input Line Entry System (SMILES) strings using a graph neural network model, attentive FP, while the protein processor abstracts protein sequence information utilizing long short-term memory architecture. This protocol not only mitigates the impact of data imbalance in the original dataset but also provides greater flexibility in customizing the general-purpose Kcat prediction model to enhance the prediction accuracy for specific enzyme classes. Our general-purpose Kcat prediction model demonstrates significantly enhanced stability and slightly better accuracy (R2 value of 0.54 versus 0.50) in comparison with Li et al.’s model using the same dataset. Additionally, our modeling protocol enables personalization of fine-tuning the general-purpose Kcat model for specific enzyme categories through focused learning. Using Cytochrome P450 (CYP450) enzymes as a case study, we achieved the best R2 value of 0.64 for the focused model. The high-quality performance and expandability of the model guarantee its broad applications in enzyme engineering and drug research & development.more » « less
-
Cold temperature is prevalent across the biosphere and slows the rates of chemical reactions. Increased catalysis has been predicted to be a dominant adaptive trait of enzymes to reduced temperature, and this expectation has informed physical models for enzyme catalysis and influenced bioprospecting strategies. To systematically test rate enhancement as an adaptive trait to cold, we paired kinetic constants of 2223 enzyme reactions with their organism’s optimal growth temperature ( T Growth ) and analyzed trends of rate constants as a function of T Growth . These data do not support a general increase in rate enhancement in cold adaptation. In the model enzyme ketosteroid isomerase (KSI), there is prior evidence for temperature adaptation from a change in an active site residue that results in a tradeoff between activity and stability. Nevertheless, we found that little of the rate constant variation for 20 KSI variants was accounted for by T Growth . In contrast, and consistent with prior expectations, we observed a correlation between stability and T Growth across 433 proteins. These results suggest that temperature exerts a weaker selection pressure on enzyme rate constants than stability and that evolutionary forces other than temperature are responsible for the majority of enzymatic rate constant variation.more » « less
-
Substituted 5-hydroxy γ-pyrones have shown promise as covalent inhibitor leads against cysteine proteases and transcription factors, but their hydrolytic instability has hindered optimization efforts. Previous mechanistic proposals have suggested that these molecules function as Michael acceptor prodrugs, releasing a leaving group to generate an ortho quinone methide–like structure. Addition to this electrophile by either water or an active site cysteine was purported to lead to inhibitor hydrolysis or enzyme inhibition, respectively. Through the use of kinetic NMR experiments, Hammett analysis, kinetic isotope effect studies, and density functional theory calculations, our findings suggest that enzyme inhibition and hydrolysis proceed by distinct pathways and are differentially influenced by substituent electronics. This mechanistic revision helps enable a more rational optimization for this class of promising compoundsmore » « less
-
We extend our recently proposed theoretical framework for estimating cavity-modified equilibrium Fermi’s golden rule (FGR) rate constants beyond the single cavity mode case to cases where the molecular system is coupled to multiple cavity modes. We show that the cumulative effect of simultaneous coupling to multiple modes can enhance FGR rate constants by orders of magnitude relative to the single mode case. We also present an analysis of the conditions necessary for maximizing this effect in the Marcus limit of FGR-based rate theory.more » « less
An official website of the United States government

