skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coupled Analysis of Desiccation Cracking in Unsaturated Soils through a Non-Local Mathematical Formulation
The formation of desiccation cracks in unsaturated soils as a discontinuity phenomenon can compromise the integrity of civil infrastructure on unsaturated soils. Because of the singularity at such discontinuities, the mathematical modeling of desiccation cracking is challenging. In this study, we apply a coupled nonlocal peridynamic poroelastic framework to model desiccation cracking in unsaturated soils. The soil skeleton is modeled by a nonlocal peridynamic elastic solid. A peridynamic equivalence of the generalized Darcy’s law is utilized to model unsaturated fluid flow. Cracking is determined by a critical stretch criterion between material points as well as an energy criterion. We present numerical simulations of desiccation cracking in soil bars and thin soil discs for one-dimensional cracking and two-dimensional cracking networks, respectively. The numerical results have demonstrated that the proposed nonlocal mathematical framework is a promising and robust method for modeling desiccation cracking in unsaturated soils.  more » « less
Award ID(s):
1659932
PAR ID:
10145847
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geosciences
Volume:
9
Issue:
10
ISSN:
2076-3263
Page Range / eLocation ID:
428
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The mechanical behavior of unsaturated porous media under non-isothermal conditions plays a vital role in geo-hazards and geo-energy engineering (e.g., landslides triggered by fire and geothermal energy harvest and foundations). Temperature increase can trigger localized failure and cracking in unsaturated porous media. This article investigates the shear banding and cracking in unsaturated porous media under non-isothermal conditions through a thermo–hydro–mechanical (THM) periporomechanics (PPM) paradigm. PPM is a nonlocal formulation of classical poromechanics using integral equations, which is robust in simulating continuous and discontinuous deformation in porous media. As a new contribution, we formulate a nonlocal THM constitutive model for unsaturated porous media in the PPM paradigm in this study. The THM meshfree paradigm is implemented through an explicit Lagrangian meshfree algorithm. The return mapping algorithm is used to implement the nonlocal THM constitutive model numerically. Numerical examples are presented to assess the capability of the proposed THM mesh-free paradigm for modeling shear banding and cracking in unsaturated porous media under non-isothermal conditions. The numerical results are examined to study the effect of temperature variations on the formation of shear banding and cracking in unsaturated porous media. 
    more » « less
  2. Abstract This paper provides a comprehensive derivation and application of the nonlocal Nernst-Planck-Poisson (NNPP) system for accurate modeling of electrochemical corrosion with a focus on the biodegradation of magnesium-based implant materials under physiological conditions. The NNPP system extends and generalizes the peridynamic bi-material corrosion model by considering the transport of multiple ionic species due to electromigration. As in the peridynamic corrosion model, the NNPP system naturally accounts for moving boundaries due to the electrochemical dissolution of solid metallic materials in a liquid electrolyte as part of the dissolution process. In addition, we use the concept of a diffusive corrosion layer, which serves as an interface for constitutive corrosion modeling and provides an accurate representation of the kinetics with respect to the corrosion system under consideration. Through the NNPP model, we propose a corrosion modeling approach that incorporates diffusion, electromigration and reaction conditions in a single nonlocal framework. The validity of the NNPP-based corrosion model is illustrated by numerical simulations, including a one-dimensional example of pencil electrode corrosion and a three-dimensional simulation of a Mg-10Gd alloy bone implant screw decomposing in simulated body fluid. The numerical simulations correctly reproduce the corrosion patterns in agreement with macroscopic experimental corrosion data. Using numerical models of corrosion based on the NNPP system, a nonlocal approach to corrosion analysis is proposed, which reduces the gap between experimental observations and computational predictions, particularly in the development of biodegradable implant materials. 
    more » « less
  3. Abstract Dynamic shearing banding and fracturing in unsaturated porous media are significant problems in engineering and science. This article proposes a multiphase micro‐periporomechanics (PPM) paradigm for modeling dynamic shear banding and fracturing in unsaturated porous media. Periporomechanics (PPM) is a nonlocal reformulation of classical poromechanics to model continuous and discontinuous deformation/fracture and fluid flow in porous media through a single framework. In PPM, a multiphase porous material is postulated as a collection of a finite number of mixed material points. The length scale in PPM that dictates the nonlocal interaction between material points is a mathematical object that lacks a direct physical meaning. As a novelty, in the coupled PPM, a microstructure‐based material length scale is incorporated by considering micro‐rotations of the solid skeleton following the Cosserat continuum theory for solids. As a new contribution, we reformulate the second‐order work for detecting material instability and the energy‐based crack criterion and J‐integral for modeling fracturing in the PPM paradigm. The stabilized Cosserat PPM correspondence principle that mitigates the multiphase zero‐energy mode instability is augmented to include unsaturated fluid flow. We have numerically implemented the novel PPM paradigm through a dual‐way fractional‐step algorithm in time and a hybrid Lagrangian–Eulerian meshfree method in space. Numerical examples are presented to demonstrate the robustness and efficacy of the proposed PPM paradigm for modeling shear banding and fracturing in unsaturated porous media. 
    more » « less
  4. Abstract Desiccation cracking is a frequent natural phenomenon that occurs in drying soil and has a significant negative impact on the mechanical and hydraulic properties of clay or geomaterials in various engineering applications. In this study, recycled glass sand (RGS) was used to reduce the plasticity of clay soil and mitigate desiccation cracks in clay soils. The effect of the RGS particle size and content was investigated using a desiccation crack observation test. Digital image processing technology was used to evaluate the crack rate, length, width, and area during the observation test. The results reveal that the cracking rate was inversely proportional to the RGS content and directly proportional to the RGS particle size. For instance, the cracking rate of clay soil treated with 25% RGS with a particle size of 0.15 mm was reduced to 0.17% compared with untreated soil. The strengths of the untreated and RGS-treated soils were evaluated through unconfined compression tests. The unconfined compressive strength of the RGS-treated clay soil decreased slightly with the addition of RGS. In general, the addition of RGS has great potential for mitigating desiccation cracks in clay soils. 
    more » « less
  5. Strain localization and cracking in porous media are significant issues in engineering and science. Periporomechanmics is a strong nonlocal framework for modeling the mechanics and physics of porous media with evolving discontinuities. In periporomechanics, the horizon that usually lacks a physical meaning serves as a nonlocal parameter. In this article, as a new contribution, we formulate a Cosserat periporomechanics paradigm incorporating a micro-structure related length scale for modeling shear banding and cracking in dry porous media. In this new Cosserat-periporomechanics framework, each material point is endowed with both translational and rotational degrees of freedom following the Cosserat continuum theory. We formulate a stabilized Cosserat constitutive correspondence principle through which classical micro-polar constitutive models for porous media can be used in Cosserat periporomechanics. We have numerically implemented the Cosserat periporomechanics paradigm through an explicit Lagrangian meshfree algorithm. We first present numerical examples to validate the implemented computational Cosserat periporomechanics paradigm for modeling shear bands and cracks. We then present numerical examples to demonstrate the efficacy and robustness of the Cosserat periporomechanics for modeling the shear banding bifurcation and crack branching in dry porous media. 
    more » « less