skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The influence of clay content on submarine slope failure: insights from laboratory experiments and numerical models
Submarine slope failures pose risks to coastlines because they can damage infrastructure and generate tsunamis. Passive margin slope failures represent the largest mass failures on Earth, yet we know little about their dynamics. While numerous studies characterize the lithology, structure, seismic attributes and geometry of failure deposits, we lack direct observations of failure evolution. Thus, we lack insight into the relationships between initial conditions, slope failure initiation and evolution, and final deposits. To investigate submarine slope failure dynamics in relation to initial conditions and to observe failure processes we performed physical experiments in a benchtop flume and produced numerical models. Submarine slope failures were induced under controlled pore pressure within sand–clay mixtures (0–5 wt% clay). Increased clay content corresponded to increased cohesion and pore pressure required for failure. Subsurface fractures and tensile cracks were only generated in experiments containing clay. Falling head tests showed a log-linear relation between hydraulic conductivity and clay content, which we used in our numerical models. Models of our experiments effectively simulate overpressure (pressure in excess of hydrostatic) and failure potential for (non)cohesive sediment mixtures. Overall our work shows the importance of clay in reducing permeability and increasing cohesion to create different failure modes due to overpressure.  more » « less
Award ID(s):
1753680
PAR ID:
10145879
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geological Society, London, Special Publications
ISSN:
0305-8719
Page Range / eLocation ID:
SP500-2019-186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In submerged sandy slopes, soil is frequently eroded as a combination of two main mechanisms: breaching, which refers to the retrogressive failure of a steep slope forming a turbidity current, and instantaneous sliding wedges, known as shear failure, that also contribute to shape the morphology of the soil deposit. Although there are several modes of failures, in this paper we investigate breaching and shear failures of granular columns using the two-fluid approach. The numerical model is first applied to simulate small-scale granular column collapses (Rondonet al.,Phys. Fluids, vol. 23, 2011, 073301) with different initial volume fractions to study the role of the initial conditions in the main flow dynamics. For loosely packed granular columns, the porous medium initially contracts and the resulting positive pore pressure leads to a rapid collapse. Whereas in initially dense-packing columns, the porous medium dilates and negative pore pressure is generated stabilizing the granular column, which results in a slow collapse. The proposed numerical approach shows good agreement with the experimental data in terms of morphology and excess of pore pressure. Numerical results are extended to a large-scale application (Weij, doctoral dissertation, 2020, Delft University of Technology; Alhaddadet al.,J. Mar. Sci. Eng., vol. 11, 2023, 560) known as the breaching process. This phenomenon may occur naturally at coasts or on dykes and levees in rivers but it can also be triggered by humans during dredging operations. The results indicate that the two-phase flow model correctly predicts the dilative behaviour and the subsequent turbidity currents associated with the breaching process. 
    more » « less
  2. Abstract Extensive vertical deformation (>4.5 m) observed at Sierra Negra volcano Galápagos, Ecuador, between 1992 and the 2005 eruption led scientists to hypothesize that repeated faulting events relieved magma chamber overpressure and prevented eruption. To better understand the catalyst of the 2005 eruption, thermomechanical models are used to track the stress state and stability of the magma storage system during the 1992–2005 inflation events. Numerical experiments indicate that the host rock surrounding the Sierra Negra reservoir remained in compression with minimal changes in overpressure (~10 MPa) leading up to the 2005 eruption. The lack of tensile failure and minimal overpressure accumulation likely inhibited dike initiation and accommodated the significant inflation without the need for pressure relief through shallow trapdoor faulting events. The models indicate that static stress transfer due to the Mw5.4 earthquake 3 hr prior to the eruption most likely triggered tensile failure and catalyzed the 2005 eruption. 
    more » « less
  3. Abstract Geophysical fluid‐granular flows, such as pyroclastic currents and debris flows, owe much of their runout and hazard behavior to the occurrence and time‐variant decay of a flow‐internal fluid pore pressure. However, modeling the effects of fluid pore pressure to forecast hazards is challenging because a unified method in Earth Sciences to quantitatively determine the permeability of these natural mixtures is currently missing. Here we combine experiments on fluidization and defluidization of pyroclastic materials, eolian sediments, and glass beads mixtures with numerical multiphase simulations to compare previous attempts to compute the permeability of complex natural particle‐fluid mixtures. In analogy to particle‐engineering studies on simple gas‐particle mixtures, we demonstrate that the effective length‐scale in the characterization of the fluid‐particle interaction of complex natural mixtures is the product of the Sauter mean diameter and the particle sphericity. Its use in the Kozeny‐Carman equation allows accurate prediction of mixture permeability, and we suggest the routine calculation of the Sauter mean from grain size distributions of the deposits of geophysical mass flows in Earth Sciences. We also show, through defluidization experiments, that the duration of gas retention in natural mixtures is well described when using the Sauter mean as the effective particle size. Further, we show through multiphase simulations that initial bed expansion extends the pore pressure diffusion timescale up to nine times. These results can be applied to small‐to‐large volume dense pyroclastic currents where the ranges of Sauter mean diameter predict gas retention for long duration and to debris flows and snow avalanches. 
    more » « less
  4. Abstract We study stress, pressure, and rock properties in evolving accretionary wedges using analytical formulations and geomechanical models. The evolution of the stress state from that imposed by uniaxial burial seaward of the trench to Coulomb failure within the wedge generates overpressure and drives compaction above the décollement. Changes in both mean and shear stress generate overpressure and shear‐induced pressures play a particularly important role in the trench area. In the transition zone between uniaxial burial and Coulomb failure, shear‐induced overpressures increase more than overburden and are higher than footwall pressures. This rapid increase in overpressure reduces the effective normal stress and weakens the plate interface along a zone that onsets ahead of the trench and persists well into the subduction zone. It also drives dewatering at the trench, which enables compaction of the hanging‐wall sediments and a porosity offset at the décollement. Within the accretionary wedge, sediments are at Coulomb failure and the pore pressure response is proportional to changes in mean stress. Low permeability and high convergence rates promote overpressure generation in the wedge, which limits sediment strength. Our results may provide a hydromechanical explanation for a wide range of observed behaviors, including the development of protothrust zones, widespread occurrence of shallow slow earthquake phenomena, and the propagation of large shallow coseismic slip. 
    more » « less
  5. Investigating the role of sand and fines content and in situ drainage conditions in governing the hydraulic conductivity of gravelly deposits is highly important to characterize the liquefaction potential of gravelly soil. In this study, a variation of hydraulic conductivity with sand content has been empirically obtained based on the existing gravel liquefaction case histories. It is found that the hydraulic conductivity of a soil matrix with more than 20%–30% sand content by mass is low enough to cause liquefaction without any impervious confining layer. In addition, a numerical study has been performed using the commercial software FEQDrain to study pore pressure generation in gravelly soil at various relative densities and hydraulic conductivities with and without an impermeable cap layer when subjected to various earthquake loadings. For both unconfined and confined condition, excess pore pressure ratios consistently increase with a decrease in hydraulic conductivity ( k) and relative density ( Dr). The excess pore pressure ratio is correlated with hydraulic conductivity, soil compressibility, and cyclic stress ratio (CSR). For the confined condition, pore pressure in the gravel layer is primarily governed by the overlying cap layer and even a sandy cap layer instead of a highly impervious clay layer can cause liquefaction. 
    more » « less