skip to main content


Title: Filter-free single-photon quantum dot resonance fluorescence in an integrated cavity-waveguide device

Semiconductor quantum dots embedded in micropillar cavities are excellent emitters of single photons when pumped resonantly. Often, the same spatial mode is used to both resonantly excite a quantum-dot state and to collect the emitted single photons, requiring cross polarization to reduce the uncoupled scattered laser light. This inherently reduces the source brightness to 50%. Critically, for some quantum applications the total efficiency from generation to detection must be over 50%. Here, we demonstrate a resonant-excitation approach to creating single photons that is free of any cross polarization, and in fact any filtering whatsoever. It potentially increases single-photon rates and collection efficiencies, and simplifies operation. This integrated device allows us to resonantly excite single quantum-dot states in several cavities in the plane of the device using connected waveguides, while the cavity-enhanced single-photon fluorescence is directed vertically (off-chip) in a Gaussian mode. We expect this design to be a prototype for larger chip-scale quantum photonics.

 
more » « less
NSF-PAR ID:
10145931
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
7
Issue:
5
ISSN:
2334-2536
Page Range / eLocation ID:
Article No. 380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose an on-chip triply resonant electro-optic modulator architecture for RF-to-optical signal conversion and provide a detailed theoretical analysis of the optimal “circuit-level” device geometries and their performance limits. The designs maximize the RF-optical conversion efficiency through simultaneous resonant enhancement of the RF drive signal, a continuous-wave (CW) optical pump, and the generated optical sideband. The optical pump and sideband are resonantly enhanced in respective supermodes of a two-coupled-cavity optical resonator system, while the RF signal can be enhanced in addition by an LC circuit formed by capacitances of the optical resonator active regions and (integrated) matching inductors. We show that such designs can offer 15-50 dB improvement in conversion efficiency over conventional microring modulators. In the proposed configurations, the photon lifetime (resonance linewidth) limits the instantaneous RF bandwidth of the electro-optic response but does not limit its central RF frequency. The latter is set by the coupling strength between the two coupled cavities and is not subject to the photon lifetime constraint inherent to conventional singly resonant microring modulators. This feature enables efficient operation at high RF carrier frequencies without a reduction in efficiency commonly associated with the photon lifetime limit and accounts for 10-30 dB of the total improvement. Two optical configurations of the modulator are proposed: a “basic” configuration with equal Q-factors in both supermodes, most suitable for narrowband RF signals, and a “generalized” configuration with independently tailored supermode Q-factors that supports a wider instantaneous bandwidth. A second significant 5-20 dB gain in modulation efficiency is expected from RF drive signal enhancement by integrated LC resonant matching, leading to the total expected improvement of 15-50 dB. Previously studied triply-resonant modulators, with coupled longitudinal (across the free spectral range (FSR)) modes, have large resonant mode volume for typical RF frequencies, which limits the interaction between the optical and RF fields. In contrast, the proposed modulators support maximally tightly confined resonant modes, with strong coupling between the mode fields, which increases and maintains high device efficiency across a range of RF frequencies. The proposed modulator architecture is compact, efficient, capable of modulation at high RF carrier frequencies and can be applied to any cavity design or modulation mechanism. It is also well suited to moderate Q, including silicon, implementations, and may be enabling for future CMOS RF-electronic-photonic systems on chip.

     
    more » « less
  2. Epitaxial quantum dots can emit polarization-entangled photon pairs. If orthogonal polarizations are coupled to independent paths, then the photons will be path-entangled. Through inverse design with adjoint method optimization, we design a quantum dot polarization demultiplexer, a nanophotonic geometry that efficiently couples orthogonally polarized transition dipole moments of a single quantum dot to two independent waveguides. We predict 95% coupling efficiency, cross talk less than 0.1%, and Purcell radiative rate enhancement factors over 11.5 for both dipoles, with sensitivity to dipole misalignment and orientation comparable to that of conventional nanophotonic geometries. We anticipate our design will be valuable for the implementation of triggered, high-rate sources of path-entangled photon-pairs on chip.

     
    more » « less
  3. Motivated by recent advances in the development of single photon emitters for quantum information sciences, here we design and formulate a quantum cascade model that describes cascade emission by a quantum dot (QD) in a cavity structure while preserving entanglement that stores information needed for single photon emission. The theoretical approach is based on a photonic structure that consists of two orthogonal cavities in which resonance with either the first or second of the two emitted photons is possible, leading to amplification and rerouting of the entangled light. The cavity–QD scheme uses a four-level cascade emitter that involves three levels for each polarization, leading to two spatially entangled photons for each polarization. By solving the Schrodinger equation, we identify the characteristic properties of the system, which can be used in conjunction with optimization techniques to achieve the “best” design relative to a set of prioritized criteria or constraints in our optical system. The theoretical investigations include an analysis of emission spectra in addition to the joint spectral density profile, and the results demonstrate the ability of the cavities to act as frequency filters for the photons that make up the entanglements and to modify entanglement properties. The results provide new opportunities for the experimental design and engineering of on-demand single photon sources.

     
    more » « less
  4. Abstract

    Deterministic positioning single site-controlled high symmetric InGaAs quantum dots (QDs) in (111)B-oriented GaAs photonic crystal cavities with nanometer-scale accuracy provides an idea component for building integrated quantum photonic circuits. However, it has been a long-standing challenge of improving cavityQ-factors in such systems. Here, by optimizing the trade-off between the cavity loss and QD spectral quality, we demonstrate our site-controlled QD-nanocavity system operating in the intermediate coupling regime mediated by phonon scattering, with the dynamic coexistence of strong and weak coupling. The cavity-exciton detuning-dependent micro-photoluminescence spectrum reveals concurrence of a trend of exciton-polariton mode avoided crossing, as a signature of Rabi doublet of the strongly coupled system. Meanwhile, a trend of keeping constant or slight blue shift of coupled exciton–cavity mode(CM) energy across zero-detuning is ascribed to the formation of collective states mediated by phonon-assisted coupling, and their rare partial out-of-synchronization linewidth-narrowing is linked to their coexisting strong-weak coupling regime. We further reveal the pump power-dependent anti-bunching photon statistical dynamics of this coexisting strong-weak coupled system and the optical features of strongly confined exciton-polaritons, and dark-exciton-like states. These observations demonstrate the potential capabilities of site-controlled QD-cavity systems as deterministic quantum nodes for on-chip quantum information processing and provide guidelines for future device optimization for achieving the strong coupling regime.

     
    more » « less
  5. Abstract

    High-quality sources of single photons are of paramount importance for quantum communication, sensing, and metrology. To these ends, resonantly excited two-level systems based on self-assembled quantum dots have recently generated widespread interest. Nevertheless, we have recently shown that for resonantly excited two-level systems, emission of a photon during the presence of the excitation laser pulse and subsequent re-excitation results in a degradation of the obtainable single-photon purity. Here, we demonstrate that generating single photons from self-assembled quantum dots with a scheme based on two-photon excitation of the biexciton strongly suppresses the re-excitation. Specifically, the pulse-length dependence of the multi-photon error rate reveals a quadratic dependence in contrast to the linear dependence of resonantly excited two-level systems, improving the obtainable multi-photon error rate by several orders of magnitude for short pulses. We support our experiments with a new theoretical framework and simulation methodology to understand few-photon sources.

     
    more » « less