skip to main content


Title: Interhemispheric Asymmetries in the Ground Magnetic Response to Interplanetary Shocks: The Role of Shock Impact Angle
Abstract

Interplanetary (IP) shocks drive magnetosphere‐ionosphere (MI) current systems that in turn are associated with ground magnetic perturbations. Recent work has shown that IP shock impact angle plays a significant role in controlling the subsequent geomagnetic activity and magnetic perturbations; for example, highly inclined shocks drive asymmetric MI responses due to interhemispherical asymmetric magnetospheric compressions, while almost head‐on shocks drive more symmetric MI responses. However, there are few observations confirming that inclined shocks drive such asymmetries in the high‐latitude ground magnetic response. We use data from a chain of Antarctic magnetometers, combined with magnetically conjugate stations on the west coast of Greenland, to test these model predictions (Oliveira & Raeder, 2015,https://doi.org/10.1002/2015JA021147; Oliveira, 2017,https://doi.org/10.1007/s13538-016-0472-x). We calculate the time derivative of the magnetic field () in each hemisphere separately. Next, we examine the ratio of Northern to Southern Hemisphereintensities and the time differences between the maximumimmediately following the impact of IP shocks. We order these results according to shock impact angles obtained from a recently published database with over 500 events and discuss how shock impact angles affect north‐south hemisphere asymmetries in the ground magnetic response. We find that the hemisphere the shock strikes first usually has (1) the first response inand (2) the most intense response in. Additionally, we show that highly inclined shocks can generate high‐latitude ground magnetic responses that differ significantly from predictions based on models that assume symmetric driving conditions.

 
more » « less
Award ID(s):
1543364 1744828
NSF-PAR ID:
10375282
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
18
Issue:
3
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Previously, Tsurutani and Lakhina (2014,https://doi.org/10.1002/2013GL058825) created estimates for a “perfect” interplanetary coronal mass ejection and performed simple calculations for the response of geospace, including. In this study, these estimates are used to drive a coupled magnetohydrodynamic‐ring current‐ionosphere model of geospace to obtain more physically accurate estimates of the geospace response to such an event. The sudden impulse phase is examined and compared to the estimations of Tsurutani and Lakhina (2014,https://doi.org/10.1002/2013GL058825). The physics‐based simulation yields similar estimates for Dst rise, magnetopause compression, and equatorialvalues as the previous study. However, results diverge away from the equator.values in excess of 30 nT/s are found as low asmagnetic latitude. Under southward interplanetary magnetic field conditions, magnetopause erosion combines with strong region one Birkeland currents to intensify theresponse. Values obtained here surpass those found in historically recorded events and set the upper threshold of extreme geomagnetically induced current activity at Earth.

     
    more » « less
  2. Abstract

    Plasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere‐ionosphere coupling. Recent studies have shown that electron phase space holes can pitch‐angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018,https://doi.org/10.1063/1.5039687). In this study, we have re‐evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraft observations into computing electron diffusion rates and lifetimes. The most important electron hole properties in this evaluation are their distributions in velocity and spatial scale and electric field root‐mean‐square intensity (). Using direct measurements of electron holes during a plasma injection event observed by the Van Allen Probe at, we find that when4 mV/m electron lifetimes can drop below 1 h and are mostly within strong diffusion limits at energies below10 keV. During an injection observed by the THEMIS spacecraft at, electron holes with even typical intensities (1 mV/m) can deplete low‐energy (a few keV) plasma sheet electrons within tens of minutes following injections and convection from the tail. Our results confirm that electron holes are a significant contributor to plasma sheet electron precipitation during injections.

     
    more » « less
  3. Abstract

    The 400 worst‐case severe environments for surface charging detected at Los Alamos National Laboratory satellites during the years of 1990–2005 as binned by the definitions of four criteria developed by Matéo‐Vélez et al. (2018,https://doi.org/10.1002/2017sw001689) and the solar wind and Interplanetary Magnetic Field (IMF) parameters and geomagnetic activity indices are analyzed. The conducted analysis shows that only Auroral Electrojet/Auroral Lower index determines the highest risk for severe environments for surface charging to happen. The presence of a substorm with the southward turning pattern in IMFindicates that the environment can be severe for surface charging to occur but this environment will not depend on whether a substorm was moderate or intense. No clear dependence on IMFis found for risk to a severe environment to occur. Appearances of severe environments for surface charging do not necessarily require high values ofKp(Planetarische Kennziffer) and no storm is needed for such an event to be detected. Among solar wind parameters, solar wind velocityis directly related to the highest risk of severe environments, dependent on thevalue; and number densityis of no importance. Two criteria for severe environment events based on the enhancements of low energy particle fluxes exhibit clearer dependencies on the solar wind and IMF parameters and geomagnetic activity indices with more distinct patterns in their time history.

     
    more » « less
  4. Abstract

    We present a statistical investigation of the effects of interplanetary magnetic field (IMF) on hemispheric asymmetry in auroral currents. Nearly 6 years of magnetic field measurements from Swarm A and C satellites are analyzed. Bootstrap resampling is used to remove the difference in the number of samples and IMF conditions between the local seasons and the hemispheres. Currents are stronger in Northern Hemisphere (NH) than Southern Hemisphere (SH) for IMF Bin NH (Bin SH) in most local seasons under both signs of IMF B. For Bin NH (Bin SH), the hemispheric difference in currents is small except in local winter when currents in NH are stronger than in SH. During Band Bin NH (Band Bin SH), the largest hemispheric asymmetry occurs in local winter and autumn, when the NH/SH ratio of field aligned current (FAC) is 1.180.09 in winter and 1.170.09 in autumn. During Band Bin NH (Band Bin SH), the largest asymmetry is observed in local autumn with NH/SH ratio of 1.160.07 for FAC. We also find an explicit Beffect on auroral currents in a given hemisphere: on average Bin NH and Bin SH causes larger currents than vice versa. The explicit Beffect on divergence‐free current during IMF Bis in very good agreement with the Beffect on the cross polar cap potential from the Super Dual Auroral Radar Network dynamic model except at SH equinox and NH summer.

     
    more » « less
  5. Abstract

    Terrestrial lightning frequently serves as a loss mechanism for energetic electrons in the Van Allen radiation belts, leading to lightning‐induced electron precipitation (LEP). Regardless of the specific causes, energetic electron precipitation from the radiation belts in general has a significant influence on the ozone concentration in the stratosphere and mesosphere. The atmospheric chemical effects induced by LEP have been previously investigated using subionospheric VLF measurements at Faraday station, Antarctica (65.25°S, 64.27°W,L= 2.45). However, there exist large variations in the precipitation flux, ionization production, and occurrence rate of LEP events depending on the peak current of the parent lightning discharge, as well as the season, location, and intensity of the thunderstorm activity. These uncertainties motivate us to revisit the calculation of atmospheric chemical changes produced by LEP. In this study, we combine a well‐validated LEP model and first‐principles atmospheric chemical simulation, and investigate three intense storms in the year of 2013, 2015, and 2017 at the magnetic latitude of 50., 32., and 35., respectively. Modeling results show that the LEP events in these storms can cumulatively drive significant changes in the,, andconcentration in the mesosphere. These changes are as high as,, andat 75–85 km altitude, respectively, and comparable to the effects typically induced by other types of radiation belt electron precipitation events. Considering the high occurrence rate of thunderstorms around the globe, the long‐term global chemical effects produced by LEP events need to be properly quantified.

     
    more » « less