skip to main content

Title: Hyperspectral imaging for high-throughput, spatially resolved spectroscopic scatterometry of silicon nanopillar arrays

Modern high-throughput nanopatterning techniques, such as nanoimprint lithography, make it possible to fabricate arrays of nanostructures (features with dimensions of 10’s to 100’s of nm) over large area substrates (cm2to m2scale) such as Si wafers, glass sheets, and flexible roll-to-roll webs. The ability to make such large-area nanostructure arrays (LNAs) has created an extensive design space, enabling a wide array of applications including optical devices, such as wire-grid polarizers, transparent conductors, color filters, and anti-reflection surfaces, and building blocks for electronic components, such as ultracapacitors, sensors, and memory storage architectures. However, existing metrology methods will have trouble scaling alongside fabrication methods. Scanning electron microscopy (SEM) and atomic force microscopy (AFM), for instance, have micron scale fields of view (FOV) that preclude comprehensive characterization of LNAs, which may be manufactured at m2per minute rates. Scatterometry approaches have larger FOVs (typically 100’s of µm to a few mm), but traditional scatterometry systems measure samples one point at a time, which also makes them too slow for large-scale LNA manufacturing. In this work, we demonstrate parallelization of the traditional spectroscopic scatterometry approach using hyperspectral imaging, increasing the throughput of the technique by a factor of 106-107. We demonstrate this approach by using hyperspectral more » imaging and inverse modeling of reflectance spectra to derive 3-dimensional geometric data for Si nanopillar array structures over both mm and cm-scale with µm-scale spatial resolution. This work suggests that geometric measurements for a variety of LNAs can be performed with the potential for high speed over large areas which may be critical for future LNA manufacturing.

« less
Authors:
; ; ;
Publication Date:
NSF-PAR ID:
10146586
Journal Name:
Optics Express
Volume:
28
Issue:
10
Page Range or eLocation-ID:
Article No. 14209
ISSN:
1094-4087; OPEXFF
Publisher:
Optical Society of America
Sponsoring Org:
National Science Foundation
More Like this
  1. Metal oxide (MO) semiconductor thin films prepared from solution typically require multiple hours of thermal annealing to achieve optimal lattice densification, efficient charge transport, and stable device operation, presenting a major barrier to roll-to-roll manufacturing. Here, we report a highly efficient, cofuel-assisted scalable combustion blade-coating (CBC) process for MO film growth, which involves introducing both a fluorinated fuel and a preannealing step to remove deleterious organic contaminants and promote complete combustion. Ultrafast reaction and metal–oxygen–metal (M-O-M) lattice condensation then occur within 10–60 s at 200–350 °C for representative MO semiconductor [indium oxide (In2O3), indium-zinc oxide (IZO), indium-gallium-zinc oxide (IGZO)] and dielectric [aluminum oxide (Al2O3)] films. Thus, wafer-scale CBC fabrication of IGZO-Al2O3thin-film transistors (TFTs) (60-s annealing) with field-effect mobilities as high as ∼25 cm2V−1s−1and negligible threshold voltage deterioration in a demanding 4,000-s bias stress test are realized. Combined with polymer dielectrics, the CBC-derived IGZO TFTs on polyimide substrates exhibit high flexibility when bent to a 3-mm radius, with performance bending stability over 1,000 cycles.

  2. Abstract

    This work presents a new class of micromachined electrostatic actuators capable of producing output force and displacement unprecedented for MEMS electrostatic actuators. The actuators feature submicron high aspect ratio transduction gaps lined up in two-dimensional arrays. Such an arrangement of microscale actuator cells allows the addition of force and displacements of a large number of cells (up to 7600 in one demonstrated array), leading to displacements ranging in the hundreds of microns and several gram forces of axial force. For 50 µm thick actuators with horizontal dimensions in the 1–4 millimeter range, an out-of-plane displacement of up to 678 µm at 46 V, a bending moment of up to 2.0 µNm, i.e., 0.08 N (~8 gram-force) of axial force over a 50 µm by 2 mm cross-sectional area of the actuator (800 kPa of electrostatically generated stress), and an energy density (mechanical work output per stroke per volume) up to 1.42 mJ/cm3was demonstrated for the actuators.

  3. Abstract

    Immunoassays and mass spectrometry are powerful single-cell protein analysis tools; however, interfacing and throughput bottlenecks remain. Here, we introduce three-dimensional single-cell immunoblots to detect both cytosolic and nuclear proteins. The 3D microfluidic device is a photoactive polyacrylamide gel with a microwell array-patterned face (xy) for cell isolation and lysis. Single-cell lysate in each microwell is “electrophoretically projected” into the 3rddimension (z-axis), separated by size, and photo-captured in the gel for immunoprobing and confocal/light-sheet imaging. Design and analysis are informed by the physics of 3D diffusion. Electrophoresis throughput is > 2.5 cells/s (70× faster than published serial sampling), with 25 immunoblots/mm2device area (>10× increase over previous immunoblots). The 3D microdevice design synchronizes analyses of hundreds of cells, compared to status quo serial analyses that impart hours-long delay between the first and last cells. Here, we introduce projection electrophoresis to augment the heavily genomic and transcriptomic single-cell atlases with protein-level profiling.

  4. Cadmium telluride (CdTe) solar cells are a promising photovoltaic (PV) technology for producing power in space owing to their high-efficiency (> 22.1 %), potential for specific power, and cost-effective manufacturing processes. In contrast to traditional space PVs, the high-Z (atomic number) CdTe absorbers can be intrinsically robust under extreme space radiation, offering long-term stability. Despite these advantages, the performance assessment of CdTe solar cells under high-energy particle irradiation (e.g., photons, neutrons, charged particles) is limited in the literature, and their stability is not comprehensively studied. In this work, we present the PV response of n-CdS / p-CdTe PVs under accelerated neutron irradiation. We measure PV properties of the devices at different neutron/photon doses. The equivalent dose deposited in the CdTe samples is simulated with deterministic and Monte Carlo radiation transport methods. Thin-film CdTe solar cells were synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate (≈ 4 cm × 4 cm). CdS:O (≈ 100 nm) was reactively RF sputtered in an oxygen/argon ambient followed by a close-spaced sublimation deposition of CdTe (≈ 3.5 μm) in an oxygen/helium ambient. The sample was exposed to a 10 min vapor CdCl2 in oxygen/helium ambient at 430˚C. The samples were exposed to amore »wet CuCl2 solution prior to anneal 200ºC. A gold back-contact was formed on CdTe via thermal evaporation. The final sample contains 16 CdTe devices. For neutron irradiation, we cleaved the CdTe substrate into four samples and exposed two samples to ≈ 90 kW reactor power neutron radiation for 5.5 hours and 8.2 hours, respectively, in our TRIGA (Training, Research, Isotopes, General Atomics) reactor. We observed a noticeable color change of the glass substrates to brown after the neutron/gamma reactor exposure. Presumably, the injected high-energy neutrons caused the breaking of chemical bonds and the displacement of atoms in the glass substrates, creating point defects and color centers. The I-V characteristics showed noticeable deterioration with over 8 hour radiations. Specifically, the saturation current of the control devices was ≈ 25 nA increasing to 1 μA and 10 μA for the 5.5-hour and 8.2-hour radiated samples, respectively. The turn-on voltage of the control devices (≈ 0.85 V) decreased with the irradiated sample (≈ 0.75 V for 5.5-hour and ≈ 0.5 V for 8.2-hour exposures), implying noticeable radiation damage occurred at the heterojunction. The higher values of the ideality factor for irradiated devices (n > 2.2) compared to that of the control devices (n ≈ 1.3) also support the deterioration of the p-n junction. We observed the notable decrease in shunt resistance (RSH) and the increase in series resistance (Rs) with the neutron dose. It is possible that Cu ions introduced during the CuCl2 treatment may migrate into CdTe grain boundaries (GBs). The presence of Cu ions at GBs can create additional leakage paths for photocarrier transport, deteriorating the overall PV performance. We estimated the radiation dose of CdTe in comparison to Si (conventional PV) using a UUTR model (e.g., MCNP6 2D UTR Reactor simulations). In this model, we simulated Si and CdTe at the center point of the triangular fuel lattice and used an “unperturbed flux” tally in the water. Our simulations yielded a dose rate of 6916 Gy/s of neutrons and 16 Gy/s of photons for CdTe, and 1 Gy/s of neutrons and 21 Gy/s of photons for Si (doses +/- <1%). The large dose rate of neutrons in CdTe is mainly attributed to the large thermal neutron absorption cross-section of 113Cd. Based on this estimation, we calculate that the exposure of our CdTe PVs is equivalent to several million years in LEO (Low-Earth Orbit), or about 10,000 years for Si in LEO. Currently, we are working on a low-dose neutron/photon radiation on CdTe PVs and their light I-Vs and microstructural characterizations to gain better understanding on the degradation of CdTe PVs.« less
  5. Abstract

    We report Very Large Array observations in theQband toward 10 ionized jet candidates to search for SiO emission, a well-known shocked gas tracer. We detected 7 mm continuum counterparts toward 90% of the jet candidates. In most cases, the jet candidate is located toward the center of the 7 mm core, and the high masses (≈100M) and densities (≈107cm−3) of the cores suggest that the central objects are very young high-mass protostars. We detected SiOJ= 1–0 emission associated with six target sources. In all cases, the morphology and spectrum of the emission is consistent with what is expected for molecular jets along an outflow axis, thus confirming the jet nature of 60% of our sample. Our data suggest a positive correlation between the SiO luminosityLSiO, and both the bolometric luminosityLBoland the radio luminositySνd2of the driving sources.