Summary Plants activate induced defenses through the recognition of molecular patterns. Like pathogen-associated molecular patterns (PAMPs), herbivore-associated molecular patterns (HAMPs) can be recognized by cell surface pattern recognition receptors leading to defensive transcriptional changes in host plants. Herbivore-induced defensive outputs are regulated by the circadian clock, but the underlying molecular mechanisms remain unknown. To investigate how the plant circadian clock regulates transcriptional reprogramming of a specific HAMP-induced pathway, we characterized the daytime and nighttime transcriptional response to caterpillar-derived In11 peptide, in the legume crop cowpea (Vigna unguiculata). Using diurnal and free-running conditions, we found that daytime In11 elicitation resulted in stronger late-induced gene expression than nighttime. Plants with a conditional arrhythmic phenotype in constant light (LL) conditions lost time-of-day dependent responses to In11 treatment, and this was associated with arrhythmic expression of circadian clock core transcription factorLate Elongated Hypocotyl VuLHY1andVuLHY2. Reporter assays with VuLHY homologs indicated that they interact with the promoter of daytime In11-inducedKunitz Trypsin Inhibitor(VuKTI) via a canonical and a polymorphic CCA1/LHY Binding Site (CBS), consistent with a mechanism of direct regulation by circadian clock transcription factors. This study improves our understanding of the time-dependent mechanisms that regulate herbivore-induced gene expression. 
                        more » 
                        « less   
                    
                            
                            Circadian control of interferon-sensitive gene expression in murine skin
                        
                    
    
            The circadian clock coordinates a variety of immune responses with signals from the external environment to promote survival. We investigated the potential reciprocal relationship between the circadian clock and skin inflammation. We treated mice topically with the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ) to activate IFN-sensitive gene (ISG) pathways and induce psoriasiform inflammation. IMQ transiently altered core clock gene expression, an effect mirrored in human patient psoriatic lesions. In mouse skin 1 d after IMQ treatment, ISGs, including the key ISG transcription factor IFN regulatory factor 7 ( Irf7), were more highly induced after treatment during the day than the night. Nuclear localization of phosphorylated-IRF7 was most prominently time-of-day dependent in epidermal leukocytes, suggesting that these cell types play an important role in the diurnal ISG response to IMQ. Mice lacking Bmal1 systemically had exacerbated and arrhythmic ISG /Irf7 expression after IMQ. Furthermore, daytime-restricted feeding, which affects the phase of the skin circadian clock, reverses the diurnal rhythm of IMQ-induced ISG expression in the skin. These results suggest a role for the circadian clock, driven by BMAL1, as a negative regulator of the ISG response, and highlight the finding that feeding time can modulate the skin immune response. Since the IFN response is essential for the antiviral and antitumor effects of TLR activation, these findings are consistent with the time-of-day–dependent variability in the ability to fight microbial pathogens and tumor initiation and offer support for the use of chronotherapy for their treatment. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1763272
- PAR ID:
- 10146633
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 11
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- 5761 to 5771
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Surfactant protein A (SP-A) plays an important role in innate immune response and host defense against various microorganisms through opsonization and complement activation. To investigate the role of SP-A in non-typeable Haemophilus influenzae (NTHi)-induced acute otitis media, this study used wild type C57BL/6 (WT) and SP-A knockout (KO) mice. We divided mice into an infection group in which the middle ear (ME) was injected with NTHi and a control group that received the same treatment using normal saline. Mice were sacrificed on d 1, 3, and 7 after treatment. Temporal bone samples were fixed for histological, cellular, and molecular analyses. Ear washing fluid (EWF) was collected for culture and analyses of pro-inflammatory cytokines and inflammatory cells. SP-A-mediated bacterial aggregation and killing and phagocytosis by macrophages were studied in vitro. SP-A expression was detected in the ME and Eustachian tube mucosa of WT mice but not KO mice. After infection, KO mice showed more severe inflammation evidenced by increased ME mucosal thickness and inflammatory cell infiltration and higher NF-κB activation compared to WT mice. The levels of IL-6 and IL-1β in the EWF of infected KO mice were higher compared to infected WT mice on d 1. Our studies demonstrated that SP-A mediated NTHi aggregation and killing and enhanced bacterial phagocytosis by macrophages in vitro and modulated inflammation of the ME in otitis media in vivo.more » « less
- 
            Kramer, Achim (Ed.)In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.more » « less
- 
            Abstract The circadian clock helps organisms to anticipate and coordinate gene regulatory responses to changes in environmental stimuli. Under growth limiting temperatures, the time of the day modulates the accumulation of polyadenylated mRNAs. In response to heat stress, plants will conserve energy and selectively translate mRNAs. How the clock and/or the time of the day regulates polyadenylated mRNAs bound by ribosomes in response to heat stress is unknown. In-depth analysis of Arabidopsis thaliana translating mRNAs found that the time of the day gates the response of approximately one-third of the circadian-regulated heat-responsive translatome. Specifically, the time of the day and heat stress interact to prioritize the pool of mRNAs in cue to be translated. For a subset of mRNAs, we observed a stronger gated response during the day, and preferentially before the peak of expression. We propose previously overlooked transcription factors (TFs) as regulatory nodes and show that the clock plays a role in the temperature response for select TFs. When the stress was removed, the redefined priorities for translation recovered within 1 h, though slower recovery was observed for abiotic stress regulators. Through hierarchical network connections between clock genes and prioritized TFs, our work provides a framework to target key nodes underlying heat stress tolerance throughout the day.more » « less
- 
            The estrous cycle regulates rhythms of locomotor activity, body temperature, and circadian gene expression. In female mice, activity increases on the night of proestrus, when elevated estrogens cause ovulation. Exogenous estradiol regulates eating behavior rhythms in female mice fed a high-fat diet, but it is unknown whether endogenous estrogens regulate eating rhythms. In this study, we investigated whether diurnal and circadian eating behavior rhythms change systematically across the estrous cycle. We first studied diurnal eating behavior rhythms in female C57BL/6J mice in 12L:12D. Estrous cycle stages were determined by vaginal cytology while eating behavior and wheel revolutions were continuously measured. The mice had regular 4- to 5-day estrous cycles. Consistent with prior studies, the greatest number of wheel revolutions occurred on the night of proestrus into estrus when systemic levels of estrogens peak. The amplitude, or robustness, of the eating behavior rhythm also fluctuated with 4- to 5-day cycles and peaked primarily during proestrus or estrus. The phases of eating behavior rhythms fluctuated, but not at 4- or 5-day intervals, and phases did not correlate with estrous cycle stages. After ovariectomy, the eating behavior rhythm amplitude fluctuated at irregular intervals. In constant darkness, the amplitude of the circadian eating behavior rhythm peaked every 4 or 5 days and coincided with the circadian day that had the greatest number of wheel revolutions, a marker of proestrus. These data suggest that fluctuations of ovarian hormones across the estrous cycle temporally organize the robustness of circadian eating behavior rhythms so that it peaks during ovulation and sexual receptivity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    