skip to main content


Title: Polyamine blockade and binding energetics in the MthK potassium channel

Polyamines such as spermidine and spermine are found in nearly all cells, at concentrations ranging up to 0.5 mM. These cations are endogenous regulators of cellular K+ efflux, binding tightly in the pores of inwardly rectifying K+ (Kir) channels in a voltage-dependent manner. Although the voltage dependence of Kir channel polyamine blockade is thought to arise at least partially from the energetically coupled movements of polyamine and K+ ions through the pore, the nature of physical interactions between these molecules is unclear. Here we analyze the polyamine-blocking mechanism in the model K+ channel MthK, using a combination of electrophysiology and computation. Spermidine (SPD3+) and spermine (SPM4+) each blocked current through MthK channels in a voltage-dependent manner, and blockade by these polyamines was described by a three-state kinetic scheme over a wide range of polyamine concentrations. In the context of the scheme, both SPD3+ and SPM4+ access a blocking site with similar effective gating valences (0.84 ± 0.03 e0 for SPD3+ and 0.99 ± 0.04 e0 for SPM4+), whereas SPM4+ binds in the blocked state with an ∼20-fold higher affinity than SPD3+ (Kd = 28.1 ± 3.1 µM for SPD3+ and 1.28 ± 0.20 µM for SPM4+), consistent with a free energy difference of 1.8 kcal/mol. Molecular simulations of the MthK pore in complex with either SPD3+ or SPM4+ are consistent with the leading amine interacting with the hydroxyl groups of T59, at the selectivity filter threshold, with access to this site governed by outward movement of K+ ions. These coupled movements can account for a large fraction of the voltage dependence of blockade. In contrast, differences in binding energetics between SPD3+ and SPM4+ may arise from distinct electrostatic interactions between the polyamines and carboxylate oxygens on the side chains of E92 and E96, located in the pore-lining helix.

 
more » « less
NSF-PAR ID:
10146660
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.1085
Date Published:
Journal Name:
Journal of General Physiology
Volume:
152
Issue:
7
ISSN:
0022-1295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dubilier, Nicole (Ed.)
    ABSTRACT In the ocean surface layer and cell culture, the polyamine transport protein PotD of SAR11 bacteria is often one of the most abundant proteins detected. Polyamines are organic cations at seawater pH produced by all living organisms and are thought to be an important component of dissolved organic matter (DOM) produced in planktonic ecosystems. We hypothesized that SAR11 cells uptake and metabolize multiple polyamines and use them as sources of carbon and nitrogen. Metabolic footprinting and fingerprinting were used to measure the uptake of five polyamine compounds (putrescine, cadaverine, agmatine, norspermidine, and spermidine) in two SAR11 strains that represent the majority of SAR11 cells in the surface ocean environment, “ Candidatus Pelagibacter” strain HTCC7211 and “ Candidatus Pelagibacter ubique” strain HTCC1062. Both strains took up all five polyamines and concentrated them to micromolar or millimolar intracellular concentrations. Both strains could use most of the polyamines to meet their nitrogen requirements, but polyamines did not fully substitute for their requirements of glycine (or related compounds) or pyruvate (or related compounds). Our data suggest that potABCD transports all five polyamines and that spermidine synthase, speE, is reversible, catalyzing the breakdown of spermidine and norspermidine, in addition to its usual biosynthetic role. These findings provide support for the hypothesis that enzyme multifunctionality enables streamlined cells in planktonic ecosystems to increase the range of DOM compounds they metabolize. IMPORTANCE Genome streamlining in SAR11 bacterioplankton has resulted in a small repertoire of genes, yet paradoxically, they consume a substantial fraction of primary production in the oceans. Enzyme multifunctionality, referring to enzymes that are adapted to have broader substrate and catalytic range than canonically defined, is hypothesized to be an adaptation that increases the range of organic compounds metabolized by cells in environments where selection favors genome minimization. We provide experimental support for this hypothesis by demonstrating that SAR11 cells take up and metabolize multiple polyamine compounds and propose that a small set of multifunctional enzymes catalyze this metabolism. We report that polyamine uptake rates can exceed metabolic rates, resulting in both high intracellular concentrations of these nitrogen-rich compounds (in comparison to native polyamine levels) and an increase in cell size. 
    more » « less
  2. It is well established that the structure of plasmid DNA is a strong function of solution ionic conditions due to changes in intramolecular electrostatic interactions between the charged phosphate groups along the DNA backbone. Multivalent cations like spermine and spermidine play a critical role in compacting and controlling the structure of supercoiled DNA in living cells. The objective of this work was to investigate the effects of these polyamines on the ultrafiltration of plasmid DNA, including possible opportunities to use these polycations to enhance the purification of specific plasmid isoforms. Data were obtained using a wide range of spermine and spermidine concentrations to evaluate DNA transmission through Biomax polyethersulfone ultrafiltration membranes. Spermine has a very strong effect on DNA transmission, with the sieving coefficient of the supercoiled plasmid decreasing by more than an order of magnitude upon addition of only 15 μM spermine. A comparable change in DNA transmission required >300 μM of the trivalent spermidine. The polyamines were able to significantly increase the selectivity for the separation of DNA from a model protein, but they were unable to provide a significant increase in the selectivity for separating DNA isoforms under the conditions examined in this study. The results do demonstrate that both spermine and spermidine can be used to control the extent of DNA transmission/purification during ultrafiltration. © 2018 American Institute of Chemical EngineersBiotechnol. Prog., 35: e2765, 2019.

     
    more » « less
  3. Abstract

    Mean annual air temperatures are projected to increase, while the winter snowpack is expected to shrink in depth and duration for many mid‐ and high‐latitude temperate forest ecosystems over the next several decades. Together, these changes will lead to warmer growing season soil temperatures and an increased frequency of soil freeze–thaw cycles (FTCs) in winter. We took advantage of the Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA, to determine how these changes in soil temperature affect foliar nitrogen (N) and carbon metabolism of red maple (Acer rubrum) trees in 2015 and 2017. Earlier work from this study revealed a similar increase in foliar N concentrations with growing season soil warming, with or without the occurrence of soil FTCs in winter. However, these changes in soil warming could differentially affect the availability of cellular nutrients, concentrations of primary and secondary metabolites, and the rates of photosynthesis that are all responsive to climate change. We found that foliar concentrations of phosphorus (P), potassium (K), N, spermine (a polyamine), amino acids (alanine, histidine, and phenylalanine), chlorophyll, carotenoids, sucrose, and rates of photosynthesis increased with growing season soil warming. Despite similar concentrations of foliar N with soil warming with and without soil FTCs in winter, winter soil FTCs affected other foliar metabolic responses. The combination of growing season soil warming and winter soil FTCs led to increased concentrations of two polyamines (putrescine and spermine) and amino acids (alanine, proline, aspartic acid, γ‐aminobutyric acid, valine, leucine, and isoleucine). Treatment‐specific metabolic changes indicated that while responses to growing season warming were more connected to their role as growth modulators, soil warming + FTC treatment‐related effects revealed their dual role in growth and stress tolerance. Together, the results of this study demonstrate that growing season soil warming has multiple positive effects on foliar N and cellular metabolism in trees and that some of these foliar responses are further modified by the addition of stress from winter soil FTCs.

     
    more » « less
  4. Voltage-gated sodium, potassium, and calcium channels consist of four voltage-sensing domains (VSDs) that surround a central pore domain and transition from a down state to an up state in response to membrane depolarization. While many types of drugs bind pore domains, the number of organic molecules known to bind VSDs is limited. The Hv1 voltage-gated proton channel is made of two VSDs and does not contain a pore domain, providing a simplified model for studying how small ligands interact with VSDs. Here, we describe a ligand, named HIF, that interacts with the Hv1 VSD in the up and down states. We find that HIF rapidly inhibits proton conduction in the up state by blocking the open channel, as previously described for 2-guanidinobenzimidazole and its derivatives. HIF, however, interacts with a site slowly accessible in the down state. Functional studies and MD simulations suggest that this interaction traps the compound in a narrow pocket lined with charged residues within the VSD intracellular vestibule, which results in slow recovery from inhibition. Our findings point to a “wrench in gears” mechanism whereby side chains within the binding pocket trap the compound as the teeth of interlocking gears. We propose that the use of screening strategies designed to target binding sites with slow accessibility, similar to the one identified here, could lead to the discovery of new ligands capable of interacting with VSDs of other voltage-gated ion channels in the down state.

     
    more » « less
  5. The functionally diverse cyclic nucleotide binding domain (CNBD) superfamily of cation channels contains both depolarization-gated (e.g., metazoan EAG family K+ channels) and hyperpolarization-gated channels (e.g., metazoan HCN pacemaker cation channels and the plant K+ channel KAT1). In both types of CNBD channels, the S4 transmembrane helix of the voltage sensor domain (VSD) moves outward in response to depolarization. This movement opens depolarization-gated channels and closes hyperpolarization-gated channels. External divalent cations and protons prevent or slow movement of S4 by binding to a cluster of acidic charges on the S2 and S3 transmembrane domains of the VSD and therefore inhibit activation of EAG family channels. However, a similar divalent ion/proton binding pocket has not been described for hyperpolarization-gated CNBD family channels. We examined the effects of external Cd2+ and protons on Arabidopsisthaliana KAT1 expressed in Xenopus oocytes and found that these ions strongly potentiate voltage activation. Cd2+ at 300 µM depolarizes the V50 of KAT1 by 150 mV, while acidification from pH 7.0 to 4.0 depolarizes the V50 by 49 mV. Regulation of KAT1 by Cd2+ is state dependent and consistent with Cd2+ binding to an S4-down state of the VSD. Neutralization of a conserved acidic charge in the S2 helix in KAT1 (D95N) eliminates Cd2+ and pH sensitivity. Conversely, introduction of acidic residues into KAT1 at additional S2 and S3 cluster positions that are charged in EAG family channels (N99D and Q149E in KAT1) decreases Cd2+ sensitivity and increases proton potentiation. These results suggest that KAT1, and presumably other hyperpolarization-gated plant CNBD channels, can open from an S4-down VSD conformation homologous to the divalent/proton-inhibited conformation of EAG family K+ channels.

     
    more » « less