QIIME 2 Enables Comprehensive End‐to‐End Analysis of Diverse Microbiome Data and Comparative Studies with Publicly Available Data
More Like this
-
Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays ( SYMBA ), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image qualitymore »
-
End-to-end data-driven image compressive sensing reconstruction (EDCSR) frameworks achieve state-of-the-art reconstruction performance in terms of reconstruction speed and accuracy. However, due to their end-to-end nature, existing EDCSR frameworks can not adapt to a variable compression ratio (CR). For applications that desire a variable CR, existing EDCSR frameworks must be trained from scratch at each CR, which is computationally costly and time-consuming. This paper presents a generic compression ratio adapter (CRA) framework that addresses the variable compression ratio (CR) problem for existing EDCSR frameworks with no modification to given reconstruction models nor enormous rounds of training needed. CRA exploits an initial reconstruction network to generate an initial estimate of reconstruction results based on a small portion of the acquired measurements. Subsequently, CRA approximates full measurements for the main reconstruction network by complementing the sensed measurements with resensed initial estimate. Our experiments based on two public image datasets (CIFAR10 and Set5) show that CRA provides an average of 13.02 dB and 5.38 dB PSNR improvement across the CRs from 5 to 30 over a naive zero-padding approach and the AdaptiveNN approach(a prior work), respectively. CRA addresses the fixed-CR limitation of existing EDCSR frameworks and makes them suitable for resource-constrained compressive sensing applications.