- Award ID(s):
- 1818497
- PAR ID:
- 10147015
- Date Published:
- Journal Name:
- Sex Roles
- ISSN:
- 0360-0025
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Online aggression represents a serious, and regularly occurring, social problem. In this piece the authors consider derogatory, harmful messages on the social media platform, Twitter, that target one of three groups of women, Asians, Blacks, and Latinx. The research focuses on messages that include one of the most common female slurs, “b!tch.” The findings of this chapter reveal that aggressive messages oriented toward women of color can be vicious and easily accessible (located in fewer than 30 seconds). Using an intersectional approach, the authors note the distinctive experiences of online harassment for women of color. The findings highlight the manner in which detrimental stereotypes are reinforced, including that of the “eroticized and obedient Asian woman,” the “angry Black woman,” and the “poor Latinx woman.” In some exceptions, women use the term “b!tch” in a positive and empowering manner, likely in an attempt to “reclaim” one of the common words used to attack females. Applying a social network perspective, we illustrate the tendency of typically hostile tweets to develop into interactive network conversations, where the original message spreads beyond the victim, and in the case of public individuals, quite widely. This research contributes to a deeper understanding of the processes that lead to online harassment, including the fortification of typical norms and social dominance. Finally, the authors find that messages that use the word “b!tch” to insult Asian, Black, and Latinx women are particularly damaging in that they reinforce traditional stereotypes of women and ethnoracial minorities, and these messages possess the ability to extend to wider audiences.more » « less
-
Online aggression represents a serious, and regularly occurring, social problem. In this piece the authors consider derogatory, harmful messages on the social media platform, Twitter, that target one of three groups of women, Asians, Blacks, and Latinx. The research focuses on messages that include one of the most common female slurs, “b!tch.” The findings of this chapter reveal that aggressive messages oriented toward women of color can be vicious and easily accessible (located in fewer than 30 seconds). Using an intersectional approach, the authors note the distinctive experiences of online harassment for women of color. The findings highlight the manner in which detrimental stereotypes are reinforced, including that of the “eroticized and obedient Asian woman,” the “angry Black woman,” and the “poor Latinx woman.” In some exceptions, women use the term “b!tch” in a positive and empowering manner, likely in an attempt to “reclaim” one of the common words used to attack females. Applying a social network perspective, we illustrate the tendency of typically hostile tweets to develop into interactive network conversations, where the original message spreads beyond the victim, and in the case of public individuals, quite widely. This research contributes to a deeper understanding of the processes that lead to online harassment, including the fortification of typical norms and social dominance. Finally, the authors find that messages that use the word “b!tch” to insult Asian, Black, and Latinx women are particularly damaging in that they reinforce traditional stereotypes of women and ethno-racial minorities, and these messages possess the ability to extend to wider audiences.more » « less
-
Online aggression represents a serious, and regularly occurring, social problem. In this piece the authors consider derogatory, harmful messages on the social media platform, Twitter, that target one of three groups of women, Asians, Blacks, and Latinx. The research focuses on messages that include one of the most common female slurs, “b!tch.” The findings of this chapter reveal that aggressive messages oriented toward women of color can be vicious and easily accessible (located in fewer than 30 seconds). Using an intersectional approach, the authors note the distinctive experiences of online harassment for women of color. The findings highlight the manner in which detrimental stereotypes are reinforced, including that of the “eroticized and obedient Asian woman,” the “angry Black woman,” and the “poor Latinx woman.” In some exceptions, women use the term “b!tch” in a positive and empowering manner, likely in an attempt to “reclaim” one of the common words used to attack females. Applying a social network perspective, we illustrate the tendency of typically hostile tweets to develop into interactive network conversations, where the original message spreads beyond the victim, and in the case of public individuals, quite widely. This research contributes to a deeper understanding of the processes that lead to online harassment, including the fortification of typical norms and social dominance. Finally, the authors find that messages that use the word “b!tch” to insult Asian, Black, and Latinx women are particularly damaging in that they reinforce traditional stereotypes of women and ethno-racial minorities, and these messages possess the ability to extend to wider audiences.more » « less
-
The authors use the timing of a change in Twitter’s rules regarding abusive content to test the effectiveness of organizational policies aimed at stemming online harassment. Institutionalist theories of social control suggest that such interventions can be efficacious if they are perceived as legitimate, whereas theories of psychological reactance suggest that users may instead ratchet up aggressive behavior in response to the sanctioning authority. In a sample of 3.6 million tweets spanning one month before and one month after Twitter’s policy change, the authors find evidence of a modest positive shift in the average sentiment of tweets with slurs targeting women and/or African Americans. The authors further illustrate this trend by tracking the network spread of specific tweets and individual users. Retweeted messages are more negative than those not forwarded. These patterns suggest that organizational “anti-abuse” policies can play a role in stemming hateful speech on social media without inflaming further abuse.
-
Sentiment analysis on large-scale social media data is important to bridge the gaps between social media contents and real world activities including political election prediction, individual and public emotional status monitoring and analysis, and so on. Although textual sentiment analysis has been well studied based on platforms such as Twitter and Instagram, analysis of the role of extensive emoji uses in sentiment analysis remains light. In this paper, we propose a novel scheme for Twitter sentiment analysis with extra attention on emojis.We first learn bi-sense emoji embeddings under positive and negative sentimental tweets individually, and then train a sentiment classifier by attending on these bi-sense emoji embeddings with an attention-based long short-term memory network (LSTM). Our experiments show that the bi-sense embedding is effective for extracting sentiment-aware embeddings of emojis and outperforms the state-of-the-art models. We also visualize the attentions to show that the bi-sense emoji embedding provides better guidance on the attention mechanism to obtain a more robust understanding of the semantics and sentiments.more » « less