skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Does Cellular Metabolism from Primary Fibroblasts and Oxidative Stress in Blood Differ between Mammals and Birds? The (Lack-thereof) Scaling of Oxidative Stress
Abstract As part of mitonuclear communication, retrograde and anterograde signaling helps maintain homeostasis under basal conditions. Basal conditions, however, vary across phylogeny. At the cell-level, some mitonuclear retrograde responses can be quantified by measuring the constitutive components of oxidative stress, the balance between reactive oxygen species (ROS) and antioxidants. ROS are metabolic by-products produced by the mitochondria that can damage macromolecules by structurally altering proteins and inducing mutations in DNA, among other processes. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. ROS are also considered to be regulated through a retrograde signaling cascade from the mitochondria to the nucleus. These cellular pathways may have implications at the whole-animal level as well. For example, birds have higher basal metabolic rates, higher blood glucose concentration, and longer lifespans than similar sized mammals, however, the literature is divergent on whether oxidative stress is higher in birds compared with mammals. Herein, we collected literature values for whole-animal metabolism of birds and mammals. Then, we collected cellular metabolic rate data from primary fibroblast cells isolated from birds and mammals and we collected blood from a phylogenetically diverse group of birds and mammals housed at zoos and measured several parameters of oxidative stress. Additionally, we reviewed the literature on basal-level oxidative stress parameters between mammals and birds. We found that mass-specific metabolic rates were higher in birds compared with mammals. Our laboratory results suggest that cellular basal metabolism, total antioxidant capacity, circulating lipid damage, and catalase activity were significantly lower in birds compared with mammals. We found no body-size correlation on cellular metabolism or oxidative stress. We also found that most oxidative stress parameters significantly correlate with increasing age in mammals, but not in birds; and that correlations with reported maximum lifespans show different results compared with correlations with known aged birds. Our literature review revealed that basal levels of oxidative stress measurements for birds were rare, which made it difficult to draw conclusions.  more » « less
Award ID(s):
1656551
PAR ID:
10147086
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
59
Issue:
4
ISSN:
1540-7063
Page Range / eLocation ID:
953 to 969
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Santos, AL (Ed.)
    Peroxisomes are key regulators of cellular and metabolic homeostasis. These organelles play important roles in redox metabolism, the oxidation of very-long-chain fatty acids (VLCFAs), and the biosynthesis of ether phospholipids. Given the essential role of peroxisomes in cellular homeostasis, peroxisomal dysfunction has been linked to various pathological conditions, tissue functional decline, and aging. In the past few decades, a variety of cellular signaling and metabolic changes have been reported to be associated with defective peroxisomes, suggesting that many cellular processes and functions depend on peroxisomes. Peroxisomes communicate with other subcellular organelles, such as the nucleus, mitochondria, endoplasmic reticulum (ER), and lysosomes. These inter-organelle communications are highly linked to the key mechanisms by which cells surveil defective peroxisomes and mount adaptive responses to protect them from damages. In this review, we highlight the major cellular changes that accompany peroxisomal dysfunction and peroxisomal inter-organelle communication through membrane contact sites, metabolic signaling, and retrograde signaling. We also discuss the age-related decline of peroxisomal protein import and its role in animal aging and age-related diseases. Unlike other organelle stress response pathways, such as the unfolded protein response (UPR) in the ER and mitochondria, the cellular signaling pathways that mediate stress responses to malfunctioning peroxisomes have not been systematically studied and investigated. Here, we coin these signaling pathways as “peroxisomal stress response pathways”. Understanding peroxisomal stress response pathways and how peroxisomes communicate with other organelles are important and emerging areas of peroxisome research. 
    more » « less
  2. Mitochondria are hypothesized to display a biphasic response to reactive oxygen species (ROS) exposure. In this study, we evaluated the time course changes in mitochondrial performance and oxidative stress in house mice following X-irradiation. Forty-eight mice were equally divided among six groups, including a nonirradiated control and five experimental groups that varied in time between X-ray exposure and euthanasia (1 h and 1, 4, 7, and 10 days after X-irradiation). We measured parameters associated with mitochondrial respiratory function and ROS emission from isolated liver and skeletal muscle mitochondria and levels of oxidative damage and antioxidants in liver, skeletal muscle, and heart tissues. Mitochondrial function dropped initially after X-irradiation but recovered quickly and was elevated 10 days after the exposure. Hydrogen peroxide production, lipid peroxidation, and protein carbonylation showed inverse U-shaped curves, with levels returning to control or lower than control, 10 days after X-irradiation. Enzymatic antioxidants and markers for mitochondrial biogenesis exhibited a tissue-specific response after irradiation. These data provide the first chronological description of the mitohormetic response after a mild dose of irradiation and highlight the protective response that cells display to ROS exposure. This study also provides valuable information and application for future mitochondrial and oxidative stress studies in numerous physiological settings. 
    more » « less
  3. ABSTRACT The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health. Translational StatementDue to aging, the efficiency of kidney functions begins to decrease and the risk of kidney diseases may increase, but specific regulators of mitochondrial age-related changes are poorly explained. This study demonstrates the MICOS complex may be a target for mitigating age-related changes in mitochondria. The MICOS complex can be associated with oxidative stress and calcium dysregulation, which also arise in many kidney pathologies. Graphical AbstractKidney aging causes a decline in the MICOS complex, concomitant with metabolic, lipidomic, and mitochondrial structural alterations. 
    more » « less
  4. null (Ed.)
    Selective autolysosomal degradation of damaged mitochondria, also called mitophagy, is an indispensable process for maintaining integrity and homeostasis of mitochondria. One well-established mechanism mediating selective removal of mitochondria under relatively mild mitochondria-depolarizing stress is PINK1-Parkin-mediated or ubiquitin-dependent mitophagy. However, additional mechanisms such as LC3-mediated or ubiquitin-independent mitophagy induction by heavy environmental stress exist and remain poorly understood. The present study unravels a novel role of stress-inducible protein Sestrin2 in degradation of mitochondria damaged by transition metal stress. By utilizing proteomic methods and studies in cell culture and rodent models, we identify autophagy kinase ULK1-mediated phosphorylation sites of Sestrin2 and demonstrate Sestrin2 association with mitochondria adaptor proteins in HEK293 cells. We show that Ser-73 and Ser-254 residues of Sestrin2 are phosphorylated by ULK1, and a pool of Sestrin2 is strongly associated with mitochondrial ATP5A in response to Cu-induced oxidative stress. Subsequently, this interaction promotes association with LC3-coated autolysosomes to induce degradation of mitochondria damaged by Cu-induced ROS. Treatment of cells with antioxidants or a Cu chelator significantly reduces Sestrin2 association with mitochondria. These results highlight the ULK1-Sestrin2 pathway as a novel stress-sensing mechanism that can rapidly induce autophagic degradation of mitochondria under severe heavy metal stress. 
    more » « less
  5. ABSTRACT The ability of organisms to effectively respond to challenges is critical for survival. We investigated how an acute stressor affected corticosterone, mitochondrial function, and DNA oxidative damage in a wild population of Leach's storm‐petrels (Hydrobates leucorhous). We conducted a standardized 20‐min handling procedure on storm‐petrel chicks and collected baseline and post‐handling blood samples. We measured plasma corticosterone and red blood cell DNA oxidative damage levels through the detection of a mutated DNA base 8‐Hydroxy‐2'‐deoxyguanosine (8‐OHdG). In addition, we quantified six measures of mitochondrial aerobic metabolism from red blood cells. Overall, the handling stressor increased plasma corticosterone levels and decreased mitochondrial efficiency to produce ATP. Although the increase in corticosterone was inversely related to the change in DNA oxidative damage, the decrease in mitochondrial efficiency was positively correlated with the change in DNA oxidative damage. Thus, over an acute stress response, individuals who had the largest increase in corticosterone also had the least amount of oxidative damage. In addition, individuals who prioritized ATP production during the acute stress also showed higher levels of oxidative damage. This work highlights the complex pathways by which corticosterone and mitochondrial efficiency affect oxidative damage during acute stress, providing new insights into the trade‐offs underlying physiological responses in wild animals. 
    more » « less