skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Winds, Waves, and Turbulence on a Shallow Continental Shelf during Passage of a Tropical Storm

Measurements of collocated fields of atmospheric forcing, surface waves, and mean and turbulent velocities associated with passage of Tropical Storm (TS) Barry over the U.S. Navy Tower R2 on the Georgia continental shelf are presented. A vertical-beam ADCP enables computation of directional surface wave spectra and hence of directional Stokes functions of depth and time, as well as mean (including tidal) and turbulent velocities throughout the water column. Full-depth turbulent velocity and backscatter structures observed during TS Barry are determined to be Langmuir supercells (LS). The LS appear in the present observations and in similar observations from a shallower site only when a surface growth rate g*exceeds a critical value, providing a means of predicting how deep an unstratified water column must be before LS will not be expected. When observed, LS structures at Tower R2 are less organized than archetypical LS structures: we suggest that this result is due primarily to smaller near-bottom growth rate in the deeper water column. Despite g*values above the critical value, and appropriate values of Langmuir and Rayleigh numbers, full-depth velocity/backscatter structures disappear completely for a time between the two wind maxima associated with the TS, as wind veers rapidly clockwise with eye passage to the west of Tower R2. From the observations, the most likely explanation for this hiatus is decreased wave breaking during the period of wind veering, reducing surface supply of “effective” vertical vorticity that dominates generation of Langmuir circulation (LC). This result has significant implications for LES modeling of LC.

 
more » « less
PAR ID:
10147108
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
50
Issue:
5
ISSN:
0022-3670
Page Range / eLocation ID:
p. 1341-1364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In shallow coastal oceans, turbulent flows driven by surface winds and waves and constrained by a solid bottom disperse particles. This work examines the mechanisms driving horizontal and vertical dispersion of buoyant and sinking particles for times much greater than turbulent integral time scales. Turbulent fields are modeled using a wind‐stress driven large eddy simulation (LES), incorporating wave‐driven Langmuir turbulence, surface breaking wave turbulent kinetic energy inputs, and a solid bottom boundary. A Lagrangian stochastic model is paired to the LES to incorporate Lagrangian particle tracking. Within a subset of intermediate buoyant rise velocities, particles experience synergistic vertical mixing in which breaking waves (BW) inject particles into Langmuir downwelling velocities sufficient to drive deep mixing. Along‐wind dispersion is controlled by vertical shear in mean along‐wind velocities. Wind and bottom friction‐driven vertical shear enhances dispersion of buoyant and sinking particles, while energetic turbulent mixing, such as from BW, dampens shear dispersion. Strongly rising and sinking particles trapped at the ocean surface and bottom, respectively, experience no vertical shear, resulting in low rates of along‐wind dispersion. Crosswind dispersion is shaped by particle advection in wind‐aligned fields of counter‐rotating Langmuir and Couette roll cells. Langmuir cells enhance crosswind dispersion in neutrally to intermediately buoyant particles through enhanced cell hopping. Surface trapping restricts particles to Langmuir convergence regions, strongly inhibiting crosswind dispersion. In shallow coastal systems, particle dispersion depends heavily on particle buoyancy and wave‐dependent turbulent effects.

     
    more » « less
  2. Langmuir turbulence consists of Langmuir circulation (LC) generated at the surface of rivers, lakes, bays, and oceans by the interaction between the wind-driven shear and surface gravity waves. In homogeneous shallow water, LC can extend to the bottom of the water column and interact with the bottom boundary layer. Large-eddy simulation (LES) of LC in shallow water was performed with the finite volume method and various forms of subgrid-scale (SGS) model characterized by different near-wall treatments of the SGS eddy viscosity. The wave forcing relative to wind forcing in the LES was set following the field measurements of full-depth LC during the presence of LC engulfing a water column 15 m in depth in the coastal ocean, reported in the literature. It is found that the SGS model can greatly impact the structure of LC in the lower half of the water column. Results are evaluated in terms of (1) the Langmuir turbulence velocity statistics and (2) the lateral (crosswind) length scale and overall cell structure of LC. LES with an eddy viscosity with velocity scale in terms of S and Ω (where S is the norm of the strain rate tensor and Ω is the norm of the vorticity tensor) and a Van Driest wall damping function (referred to as the S-Omega model) is found to provide best agreement with pseudo-spectral LES in terms of the lateral length scale and overall cell structure of LC. Two other SGS models, namely the dynamic Smagorinsky model and the wall-adapting local-eddy viscosity model are found to provide less agreement with pseudo- spectral LES, for example, as they lead to less coherent bottom convergence of the cells and weaker associ ated upward transport of slow downwind moving fluid. Finally, LES with the S-Omega SGS model is also found to lead to good agreement with physical measurements of LC in the coastal ocean in terms of Langmuir turbulence decay during periods of surface heating 
    more » « less
  3. This study utilizes a large-eddy simulation (LES) approach to systematically assess the directional variability of wave-driven Langmuir turbulence (LT) in the ocean surface boundary layer (OSBL) under tropical cyclones (TCs). The Stokes drift vector, which drives LT through the Craik–Leibovich vortex force, is obtained through spectral wave simulations. LT’s direction is identified by horizontally elongated turbulent structures and objectively determined from horizontal autocorrelations of vertical velocities. In spite of a TC’s complex forcing with great wind and wave misalignments, this study finds that LT is approximately aligned with the wind. This is because the Reynolds stress and the depth-averaged Lagrangian shear (Eulerian plus Stokes drift shear) that are key in determining the LT intensity (determined by normalized depth-averaged vertical velocity variances) and direction are also approximately aligned with the wind relatively close to the surface. A scaling analysis of the momentum budget suggests that the Reynolds stress is approximately constant over a near-surface layer with predominant production of turbulent kinetic energy by Stokes drift shear, which is confirmed from the LES results. In this layer, Stokes drift shear, which dominates the Lagrangian shear, is aligned with the wind because of relatively short, wind-driven waves. On the contrary, Stokes drift exhibits considerable amount of misalignments with the wind. This wind–wave misalignment reduces LT intensity, consistent with a simple turbulent kinetic energy model. Our analysis shows that both the Reynolds stress and LT are aligned with the wind for different reasons: the former is dictated by the momentum budget, while the latter is controlled by wind-forced waves.

     
    more » « less
  4. Abstract

    Data from an air–sea interaction tower are used to close the turbulent kinetic energy (TKE) budget in the wave-affected surface layer of the upper ocean. Under energetic wind forcing with active wave breaking, the dominant balance is between the dissipation rate of TKE and the downward convergence in vertical energy flux. The downward energy flux is driven by pressure work, and the TKE transport is upward, opposite to the downgradient assumption in most turbulence closure models. The sign and the relative magnitude of these energy fluxes are hypothesized to be driven by an interaction between the vertical velocity of Langmuir circulation (LC) and the kinetic energy and pressure of wave groups, which is the result of small-scale wave–current interaction. Consistent with previous modeling studies, the data suggest that the horizontal velocity anomaly associated with LC refracts wave energy away from downwelling regions and into upwelling regions, resulting in negative covariance between the vertical velocity of LC and the pressure anomaly associated with the wave groups. The asymmetry between downward pressure work and upward TKE flux is explained by the Bernoulli response of the sea surface, which results in groups of waves having a larger pressure anomaly than the corresponding kinetic energy anomaly, consistent with group-bound long-wave theory.

     
    more » « less
  5. Abstract

    Various forms of regime diagrams have become an accepted means of identifying the dominant type of forcing of turbulence in the ocean surface layer. However, all of the proposed forms share a number of issues, demonstrated here, that make them an imperfect tool for this purpose. Instead, I suggest a forcing space consisting of surface buoyancy flux (usually dominated by surface heat flux) and a growth rate defined as the inverse of a theoretical time scale for growth of Langmuir circulations in an unstratified water column. Using coastal data, it is demonstrated that, provided forcing conditions are roughly constant for several hours, location in the upper half-plane of this forcing space predicts organizational characteristics of observed turbulence that range in a systematic way between those of “pure” convection and those of full depth Langmuir circulations. In this upper half-plane, where a convective scale velocity exists and the surface Stokes drift velocity can be computed, allowing calculation of a Stokes scale velocity, a linear combination of the two scale velocities provides a consistent estimate of observed rms turbulent vertical velocity. Time dependence is nevertheless a frequent characteristic of ocean surface layer forcing, if only because of the (usually large) diurnal variation in surface heat flux. It is shown that the time scale of response of surface layer turbulence to time variable forcing depends on whether the major change is due to wind/wave or buoyancy forcing. Relevant modeling studies are suggested.

     
    more » « less