skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Al(OR F ) 3 (R F = C(CF 3 ) 3 ) activated silica: a well-defined weakly coordinating surface anion
Weakly Coordinating Anions (WCAs) containing electron deficient delocalized anionic fragments that are reasonably inert allow for the isolation of strong electrophiles. Perfluorinated borates, perfluorinated aluminum alkoxides, and halogenated carborane anions are a few families of WCAs that are commonly used in synthesis. Application of similar design strategies to oxide surfaces is challenging. This paper describes the reaction of Al(OR F ) 3 *PhF (R F = C(CF 3 ) 3 ) with silica partially dehydroxylated at 700 °C (SiO 2-700 ) to form the bridging silanol Si–OH⋯Al(OR F ) 3 ( 1 ). DFT calculations using small clusters to model 1 show that the gas phase acidity (GPA) of the bridging silanol is 43.2 kcal mol −1 lower than the GPA of H 2 SO 4 , but higher than the strongest carborane acids, suggesting that deprotonated 1 would be a WCA. Reactions of 1 with NOct 3 show that 1 forms weaker ion-pairs than classical WCAs, but stronger ion-pairs than carborane or borate anions. Though 1 forms stronger ion-pairs than these state-of-the-art WCAs, 1 reacts with alkylsilanes to form silylium type surface species. To the best of our knowledge, this is the first example of a silylium supported on derivatized silica.  more » « less
Award ID(s):
1800561
PAR ID:
10147324
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
6
ISSN:
2041-6520
Page Range / eLocation ID:
1510 to 1517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The silylium‐like surface species [iPr3Si][(RFO)3Al−OSi≡)] activates (N^N)Pd(CH3)Cl (N^N=Ar−N=CMeMeC=N−Ar, Ar=2,6‐bis(diphenylmethyl)‐4‐methylbenzene) by chloride ion abstraction to form [(N^N)Pd−CH3][(RFO)3Al−OSi≡)] (1). A combination of FTIR, solid‐state NMR spectroscopy, and reactions with CO or vinyl chloride establish that1shows similar reactivity patterns as (N^N)Pd(CH3)Cl activated with Na[B(ArF)4]. Multinuclear13C{27Al} RESPDOR and1H{19F} S‐REDOR experiments are consistent with a weakly coordinated ion‐pair between (N^N)Pd−CH3+and [(RFO)3Al−OSi≡)].1catalyzes the polymerization of ethylene with similar activities as [(N^N)Pd−CH3]+in solution and incorporates up to 0.4 % methyl acrylate in copolymerization reactions.1produces polymers with significantly higher molecular weight than the solution catalyst, and generates the highest molecular weight polymers currently reported in copolymerization reactions of ethylene and methylacrylate. 
    more » « less
  2. null (Ed.)
    A series of new Ce( iv ) based fluorides with two different compositions, Cs 2 MCe 3 F 16 (M = Ni 2+ , Co 2+ , Mn 2+ , and Zn 2+ ) and Na 3 MCe 6 F 30 (M = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) were synthesized as high quality single crystals via a mild hydrothermal route. The compounds with the composition Cs 2 MCe 3 F 16 (M = Ni 2+ , Co 2+ , Mn 2+ , and Zn 2+ ) crystallize in the hexagonal crystal system with space group P 6 3 / mmc and are isotypic with the uranium analogs, whereas the Na 3 MCe 6 F 30 (M = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) compounds crystallize in the trigonal space group P 3̄ c 1 and are isotypic with the uranium and thorium analogs Na x MM′ 6 F 30 (M′ = Th, U). The Cs 2 MCe 3 F 16 compounds exhibit a complex 3D crystal structure constructed of edge-sharing cerium trimers, in which all three Ce atoms share a common μ 3 -F unit. The Na 3 MCe 6 F 30 compounds are constructed of edge- and vertex-sharing cerium polyhedra connected to each other to form Ce 6 F 30 6− framework, which can accommodate only relatively smaller trivalent cations (M 3+ = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) as compared to uranium and thorium analogs. Magnetic susceptibility measurements were carried out on the samples of Cs 2 MCe 3 F 16 (M = Ni 2+ and Co 2+ ), which exhibit paramagnetic behavior. 
    more » « less
  3. Abstract Al(OC(CF3)3)(PhF) reacts with silanols present on partially dehydroxylated silica to form well‐defined ≡SiOAl(OC(CF3)3)2(O(Si≡)2) (1).27Al NMR and DFT calculations with a small cluster model to approximate the silica surface show that the aluminum in1adopts a distorted trigonal bipyramidal coordination geometry by coordinating to a nearby siloxane bridge and a fluorine from the alkoxide. Fluoride ion affinity (FIA) calculations follow experimental trends and show that1is a stronger Lewis acid than B(C6F5)3and Al(OC(CF3)3)(PhF) but is weaker than Al(OC(CF3)3) andiPr3Si+. Cp2Zr(CH3)2reacts with1to form [Cp2ZrCH3][≡SiOAl(OC(CF3)3)2(CH3)] (3) by methide abstraction. This reactivity pattern is similar to reactions of organometallics with the proposed strong Lewis acid sites present on Al2O3
    more » « less
  4. Abstract The recognition of boron compounds is well developed as boronic acids but untapped as organotrifluoroborate anions (R−BF3). We are exploring the development of these and other designer anions as anion‐recognition motifs by considering them as substituted versions of the parent inorganic ion. To this end, we demonstrate strong and reliable binding of organic trifluoroborates, R−BF3, by cyanostar macrocycles that are size‐complementary to the inorganic BF4progenitors. We find that recognition is modulated by the substituent's sterics and that the affinities are retained using the common K+salts of R−BF3anions. 
    more » « less
  5. When attached to a tetrazole, a TtR 3 group (Tt = C, Si; R = H, F) engages in a Tt⋯N tetrel bond (TtB) with the Lewis base NCM (M = Li, Na). MP2/aug-cc-pVTZ calculations find that the Si⋯N TtB is rather strong, more than 20 kcal mol −1 for SiH 3 , and between 46 and 53 kcal mol −1 for SiF 3 . The C⋯N TtBs are relatively weaker, less than 8 kcal mol −1 . All of these bonds are intensified when a BH 3 or BF 3 molecule forms a triel bond to a N atom of the tetrazole ring, particularly for the C⋯N TtB, up to 11 kcal mol −1 . In these triads, the SiR 3 group displaces far enough along the line toward the base that it may be thought of as half transferred. 
    more » « less