skip to main content


Title: Effects of fixed charge group physicochemistry on anion exchange membrane permselectivity and ion transport
Understanding the effects of polymer chemistry on membrane ion transport properties is critical for enabling efforts to design advanced highly permselective ion exchange membranes for water purification and energy applications. Here, the effects of fixed charge group type on anion exchange membrane (AEM) apparent permselectivity and ion transport properties were investigated using two crosslinked AEMs. The two AEMs, containing a similar acrylonitrile, styrene and divinyl benzene-based polymer backbone, had either trimethyl ammonium or 1,4-dimethyl imidazolium fixed charge groups. Membrane deswelling, apparent permselectivity and ion transport properties of the two AEMs were characterized using aqueous solutions of lithium chloride, sodium chloride, ammonium chloride, sodium bromide and sodium nitrate. Apparent permselectivity measurements revealed a minor influence of the fixed charge group type on apparent permselectivity. Further analysis of membrane swelling and ion sorption, however, suggests that less hydrophilic fixed charge groups more effectively exclude co-ions compared to more hydrophilic fixed charge groups. Analysis of ion diffusion properties suggest that ion and fixed charge group enthalpy of hydration properties influence ion transport, likely through a counter-ion condensation, ion pairing or binding mechanism. Interactions between fixed charge groups and counter-ions may be stronger if the enthalpy of hydration properties of the ion and fixed charge group are similar, and suppressed counter-ion diffusion was observed in this situation. In general, the hydration properties of the fixed charge group may be important for understanding how fixed charge group chemistry influences ion transport properties in anion exchange membranes.  more » « less
Award ID(s):
1752048
NSF-PAR ID:
10147522
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
14
ISSN:
1463-9076
Page Range / eLocation ID:
7283 to 7293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cyclic voltammetry was applied to investigate the permselective properties of electrode-supported ion-exchange polymer films intended for use in future molecular-scale spectroscopic studies of bipolar membranes. The ability of thin ionomer film assemblies to exclude mobile ions charged similarly to the polymer (co-ions) and accumulate ions charged opposite to the polymer (counterions) was scrutinized through use of the diffusible redox probe molecules [Ru(NH3)6]3+and [IrCl6]2−. With the anion exchange membrane (AEM) phase supported on a carbon disk electrode, bipolar junctions formed by addition of a cation exchange membrane (CEM) overlayer demonstrated high selectivity toward redox ion extraction and exclusion. For junctions formed using a Fumion®AEM phase and a Nafion®overlayer, [IrCl6]2−ions exchanged into Fumion®prior to Nafion®overcoating remained entrapped and the Fumion®excluded [Ru(NH3)6]3+ions for durability testing periods of more than 20 h under conditions of interest for eventualin situspectral measurements. Experiments with the Sustainion®anion exchange ionomer uncovered evidence for [IrCl6]2−ion coordination to pendant imidazolium groups on the polymer. A cyclic voltammetric method for estimation of the effective diffusion coefficient and equilibrium extraction constant for redox active probe ions within inert, uniform density electrode-supported thin films was applied to examine charge transport mechanisms.

     
    more » « less
  2. null (Ed.)
    Water filtration membranes with advanced ion selectivity are urgently needed for resource recovery and the production of clean drinking water. This work investigates the separation capabilities of cross-linked zwitterionic copolymer membranes, a self-assembled membrane system featuring subnanometer zwitterionic nanochannels. We demonstrate that selective zwitterion–anion interactions simultaneously control salt partitioning and diffusivity, with the permeabilities of NaClO 4 , NaI, NaBr, NaCl, NaF, and Na 2 SO 4 spanning roughly three orders of magnitude over a wide range of feed concentrations. We model salt flux using a one-dimensional transport model based on the Maxwell–Stefan equations and show that diffusion is the dominant mode of transport for 1:1 sodium salts. Differences in zwitterion–Cl − and zwitterion–F − interactions granted these membranes with the ultrahigh Cl − /F − permselectivity ( P Cl- /P F- = 24), enabling high fluoride retention and high chloride passage even from saline mixtures of NaCl and NaF. 
    more » « less
  3. Abstract

    Organic mixed conductors are increasingly employed in electrochemical devices operating in aqueous solutions that leverage simultaneous transport of ions and electrons. Indeed, their mode of operation relies on changing their doping (oxidation) state by the migration of ions to compensate for electronic charges. Nevertheless, the structural and morphological changes that organic mixed conductors experience when ions and water penetrate the material are not fully understood. Through a combination of electrochemical, gravimetric, and structural characterization, the effects of water and anions with a hydrophilic conjugated polymer are elucidated. Using a series of sodium‐ion aqueous salts of varying anion size, hydration shells, and acidity, the links between the nature of the anion and the transport and structural properties of the polymer are systematically studied. Upon doping, ions intercalate in the crystallites, permanently modifying the lattice spacings, and residual water swells the film. The polymer, however, maintains electrochemical reversibility. The performance of electrochemical transistors reveals that doping with larger, less hydrated, anions increases their transconductance but decreases switching speed. This study highlights the complexity of electrolyte‐mixed conductor interactions and advances materials design, emphasizing the coupled role of polymer and electrolyte (solvent and ion) in device performance.

     
    more » « less
  4. ABSTRACT

    Polystyrene‐based anion exchange membranes (AEMs) have been fabricated usingin situclick chemistry between azide and alkyne moieties introduced as side groups on functionalized polymers. The membrane properties such as water uptake, swelling ratio and conductivity were affected by the number of cations and the degree of crosslinking. The membranes containing a larger amount of trimethylammonium cationic groups (i.e. higher ion exchange capacity) showed high hydroxide conductivity when immersed in KOH solution, exhibiting a peak in conductivity (156 mS cm−1) in 3 mol L–1KOH solution. A higher degree of crosslinking tended to decrease conductivity. These membranes demonstrated relatively good stability in 8 mol L–1KOH at 60 °C and maintained 33%–62% of initial conductivity after 49 days with most of the loss in conductivity occurring in early stages of the test. In an alkaline fuel cell, the areal specific resistance was constant indicating good stability of the membranes. The observed peak power density (157 mW cm−2) was comparable to that of other AEM‐based fuel cells reported. © 2018 Society of Chemical Industry

     
    more » « less
  5. null (Ed.)
    Fuel-cell deployable proton exchange membranes (PEMs) are considered to be a promising technology for clean and efficient power generation. However, a fundamental atomistic understanding of the hydronium diffusion process in the PEM environment is an ongoing challenge. In this work, we employ fully atomistic ab initio molecular dynamics to simulate diffusion mechanisms of the hydronium ion in a model PEM. In order to mimic a precise polymer with a layered morphology, as recently introduced by Trigg, et al. , Nat. Mater. , 2018, 17 , 725, a nano-confined environment was created composed of graphane bilayers to which sulfonate end groups (SO 3 − ) are attached, and the space between the bilayers was subsequently filled with water and hydronium ions up to λ values of 3 and 4, where λ denotes the water-to-anion ratio. We find that for the low λ value, the water distribution is not homogeneous, which results in an incomplete second solvation shell for H 3 O + , fewer water molecules in the vicinity of SO 3 − , and a higher probability of obtaining a coordination number of ∼1 for the nearest oxygen neighbor to SO 3 − . These conditions increase the probability that H 3 O + will react with SO 3 − according to the reaction SO 3 − + H 3 O + ↔ SO 3 H + H 2 O, which was found to be an essential part of the hydronium diffusion mechanism. This suggests there are optimal hydration conditions that allow the sulfonate end groups to take an active part in the hydronium diffusion mechanism, resulting in high hydronium conductivity. We expect that the results of this study could help guide synthesis and experimental characterization used to design new PEM materials with high hydronium conductivity. 
    more » « less