This paper introduces an interactive form-finding technique to design and explore continuous Shellular Funicular Structures in the context of Polyhedral Graphic Statics (PGS). Shellular funicular forms are two-manifold shell-based geometries dividing the space into two interwoven sub-spaces, each of which can be represented by a 3D graph named labyrinth [1]. Both form and force diagrams include labyrinths, and the form finding is achieved by an iterative subdivision of the force diagram across its labyrinths [2]. But this iterative process is computationally very expensive, preventing interactive exploration of various forms for an initial force diagram. The methodology starts with identifying three sets of labyrinth graphs for the initial force diagram and immediately visualizing their form diagrams as smooth and continuous surfaces. Followed by exploring and finalizing the desired form, the force diagram will be subdivided across the desired labyrinth graph to result in a shellular funicular form diagram (Figure 1). The paper concludes by evaluating the mechanical performance of continuous shellular structures compared to their discrete counterparts. 
                        more » 
                        « less   
                    
                            
                            Betti Geometric Langlands
                        
                    
    
            Introduces and surveys a Betti form of the geometric Langlands conjecture, parallel to the de Rham form developed by Beilinson-Drinfeld and Arinkin-Gaitsgory, and the Dolbeault form of Donagi-Pantev, and inspired by the work of Kapustin-Witten in supersymmetric gauge theory. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1802373
- PAR ID:
- 10147560
- Date Published:
- Journal Name:
- Algebraic geometry: Salt Lake City 2015, AMS Proceedings of symposia in pure mathematics
- Volume:
- 97
- Issue:
- 2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Motivated by the recent success in using a latticed-based version of the aggregation-volume-bias Monte Carlo method to determine the thermodynamic stabilities of both bcc and fcc clusters formed by Lennard-Jones particles, this approach is extended to the calculation of the nucleation-free energies of solid clusters formed by urea at 300 K in two different polymorphs, i.e., form I and form IV. In addition to the lattice confinement, the constraint on the molecular orientation was found necessary to ensure that the clusters sampled in these simulations are in the corresponding form. A model that can reproduce the experimental properties such as density and lattice parameters of form I at ambient conditions is used in this study. From the size dependencies of the free energies obtained for a finite set of clusters studied, the free energies of clusters at other sizes, including an infinitely large cluster, were extrapolated. At the infinite size, equivalent to a bulk solid, form I was found to be more stable than form IV, which agrees with the experimental results. In addition, form I was found to be thermodynamically stable throughout the entire cluster size range investigated here, which contradicts the previous finding that small form I clusters are unstable from the crystal nucleation simulation studies.more » « less
- 
            The chemistry community has long sought the exact relationship between the conventional and the unitary coupled cluster ansatz for a single-reference system, especially given the interest in performing quantum chemistry on quantum computers. In this work, we show how one can use the operator manipulations given by the exponential disentangling identity and the Hadamard lemma to relate the factorized form of the unitary coupled-cluster approximation to a factorized form of the conventional coupled cluster approximation (the factorized form is required, because some amplitudes are operator-valued and do not commute with other terms). By employing the Trotter product formula, one can then relate the factorized form to the standard form of the unitary coupled cluster ansatz. The operator dependence of the factorized form of the coupled cluster approximation can also be removed at the expense of requiring even more higher-rank operators, finally yielding the conventional coupled cluster. The algebraic manipulations of this approach are daunting to carry out by hand, but can be automated on a computer for small enough systems.more » « less
- 
            null (Ed.)The existence of simple uncoupled no-regret learning dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form games generalize normal-form games by modeling both sequential and simultaneous moves, as well as imperfect information. Because of the sequential nature and presence of private information in the game, correlation in extensive-form games possesses significantly different properties than its counterpart in normal-form games, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to the classical notion of correlated equilibrium in normal-form games. Compared to the latter, the constraints that define the set of EFCEs are significantly more complex, as the correlation device must keep into account the evolution of beliefs of each player as they make observations throughout the game. Due to that significant added complexity, the existence of uncoupled learning dynamics leading to an EFCE has remained a challenging open research question for a long time. In this article, we settle that question by giving the first uncoupled no-regret dynamics that converge to the set of EFCEs in n-player general-sum extensive-form games with perfect recall. We show that each iterate can be computed in time polynomial in the size of the game tree, and that, when all players play repeatedly according to our learning dynamics, the empirical frequency of play is proven to be a O(T^-0.5)-approximate EFCE with high probability after T game repetitions, and an EFCE almost surely in the limit.more » « less
- 
            null (Ed.)The existence of simple, uncoupled no-regret dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form (that is, tree-form) games generalize normal-form games by modeling both sequential and simultaneous moves, as well as private information. Because of the sequential nature and presence of partial information in the game, extensive-form correlation has significantly different properties than the normal-form counterpart, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to normal-form correlated equilibrium. However, it was currently unknown whether EFCE emerges as the result of uncoupled agent dynamics. In this paper, we give the first uncoupled no-regret dynamics that converge to the set of EFCEs in n-player general-sum extensive-form games with perfect recall. First, we introduce a notion of trigger regret in extensive-form games, which extends that of internal regret in normal-form games. When each player has low trigger regret, the empirical frequency of play is close to an EFCE. Then, we give an efficient no-trigger-regret algorithm. Our algorithm decomposes trigger regret into local subproblems at each decision point for the player, and constructs a global strategy of the player from the local solutions at each decision point.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    