skip to main content

Title: Interactions between Moisture and Tropical Convection. Part II: The Convective Coupling of Equatorial Waves

The exponential increase in precipitation with increasing column saturation fraction (CSF) is used to investigate the role of moisture in convective coupling. This simple empirical relationship between precipitation and CSF is shown to capture nearly all MJO-related variability in TRMM precipitation, ~80% of equatorial Rossby wave–related variability, and ~75% of east Pacific easterly wave–related variability. In contrast, this empirical relationship only captures roughly half of TRMM precipitation variability associated with Kelvin waves, African easterly waves, and mixed Rossby–gravity waves, suggesting coupling mechanisms other than moisture are playing leading roles in these phenomena. These latter phenomena have strong adiabatically forced vertical motions that could reduce static stability and convective inhibition while simultaneously moistening, creating a more favorable convective environment. Cross-spectra of precipitation and column-integrated dry static energy show enhanced coherence and an out-of-phase relationship in the Kelvin wave, mixed Rossby–gravity wave, and eastward inertio-gravity wave bands, supporting this narrative. The cooperative modulation of precipitation by moisture and temperature anomalies is shown to shorten the convective adjustment time scale (i.e., time scale by which moisture and precipitation are relaxed toward their “background” state) of these phenomena. Speeding the removal of moisture anomalies relative to that of temperature anomalies may allow the latter more » to assume a more important role in driving moist static energy fluctuations, helping promote the gravity wave character of these phenomena.

« less
Authors:
 ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10147703
Journal Name:
Journal of the Atmospheric Sciences
Volume:
77
Issue:
5
Page Range or eLocation-ID:
p. 1801-1819
ISSN:
0022-4928
Publisher:
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Observations and theory of convectively coupled equatorial waves suggest that they can be categorized into two distinct groups. Moisture modes are waves whose thermodynamics are governed by moisture fluctuations. The thermodynamics of the gravity wave group, on the other hand, are rooted in buoyancy (temperature) fluctuations. On the basis of scale analysis, it is found that a simple nondimensional parameter—akin to the Rossby number—can explain the processes that lead to the existence of these two groups. This parameter, defined as N mode , indicates that moisture modes arise when anomalous convection lasts sufficiently long so that dry gravity waves eliminate the temperature anomalies in the convective region, satisfying weak temperature gradient (WTG) balance. This process causes moisture anomalies to dominate the distribution of moist enthalpy (or moist static energy), and hence the evolution of the wave. Conversely, convectively coupled gravity waves arise when anomalous convection eliminates the moisture anomalies more rapidly than dry gravity waves can adjust the troposphere toward WTG balance, causing temperature to govern the moist enthalpy distribution and evolution. Spectral analysis of reanalysis data indicates that slowly propagating waves ( c p ~ 3 m s −1 ) are likely to be moisture modes while fast wavesmore »( c p ~ 30 m s −1 ) exhibit gravity wave behavior, with “mixed moisture–gravity” waves existing in between. While these findings are obtained from a highly idealized framework, it is hypothesized that they can be extended to understand simulations of convectively coupled waves in GCMs and the thermodynamics of more complex phenomena.« less
  2. Abstract

    We study the adjustment of the tropical atmosphere to localized surface heating using a Lagrangian atmospheric model (LAM) that simulates a realistic Madden–Julian oscillation (MJO)—the dominant, eastward-propagating mode of tropical intraseasonal variability modulating atmospheric convection. Idealized warm sea surface temperature (SST) anomalies of different aspect ratios and magnitudes are imposed in the equatorial Indian Ocean during MJO-neutral conditions and then maintained for 15 days. The experiments then continue for several more months. Throughout these experiments, we observe a robust generation of an MJO event, evident in precipitation, velocity, temperature, and moisture fields, which becomes a key element of atmospheric adjustment along with the expected Kelvin and Rossby waves. The MJO circulation pattern gradually builds up during the first week, and then starts to propagate eastward at a speed of 5–7 m s−1. The upper-level quadrupole circulation characteristic of the MJO becomes evident around day 14, with two anticyclonic gyres generated by the Gill-type response to convective heating and two cyclonic gyres forced by the excited Kelvin waves and extratropical Rossby wave trains. A moisture budget analysis shows that the eastward propagation of the MJO is controlled largely by the anomalous advection of moisture and by the residual between anomalousmore »moisture accumulation due to converging winds and precipitation. The initial MJO event is followed by successive secondary events, maintaining the MJO for several more cycles. Thus, this study highlights the fundamental role that the MJO can play in the adjustment of the moist equatorial atmosphere to localized surface heating.

    « less
  3. null (Ed.)
    Abstract Convective quasi-equilibrium (QE) and weak temperature gradient (WTG) balances are frequently employed to study the tropical atmosphere. This study uses linearized equatorial beta-plane solutions to examine the relevant regimes for these balances. Wave solutions are characterized by moisture–temperature ratio ( q – T ratio) and dominant thermodynamic balances. An empirically constrained precipitation closure assigns different sensitivities of convection to temperature ( ε t ) and moisture ( ε q ). Longwave equatorial Kelvin and Rossby waves tend toward the QE balance with q – T ratios of ε t : ε q that can be ~1–3. Departures from strict QE, essential to both precipitation and wave dynamics, grow with wavenumber. The propagating QE modes have reduced phase speeds because of the effective gross moist stability m eff , with a further reduction when ε t > 0. Moisture modes obeying the WTG balance and with large q – T ratios (>10) emerge in the shortwave regime; these modes exist with both Kelvin and Rossby wave meridional structures. In the υ = 0 case, long propagating gravity waves are absent and only emerge beyond a cutoff wavenumber. Two bifurcations in the wave solutions are identified and used to locate themore »spatial scales for QE–WTG transition and gravity wave emergence. These scales are governed by the competition between the convection and gravity wave adjustment times and are modulated by m eff . Near-zero values of m eff shift the QE–WTG transition wavenumber toward zero. Continuous transitions replace the bifurcations when m eff < 0 or moisture advection/WISHE mechanisms are included, but the wavenumber-dependent QE and WTG balances remain qualitatively unaltered. Rapidly decaying convective/gravity wave modes adjust to the slowly evolving QE/WTG state in the longwave/shortwave regimes, respectively.« less
  4. A new diagnostic framework is developed and applied to ERA-Interim to quantitatively assess vertical velocity (omega) profiles in the wavenumber–frequency domain. Two quantities are defined with the first two EOF–PC pairs of omega profiles in the tropical ocean: a top-heaviness ratio and a tilt ratio. The top-heaviness and tilt ratios are defined, respectively, as the cospectrum and quadrature spectrum of PC1 and PC2 divided by the power spectrum of PC1. They represent how top-heavy an omega profile is at the convective maximum, and how much tilt omega profiles contain in the spatiotemporal evolution of a wave. The top-heaviness ratio reveals that omega profiles become more top-heavy as the time scale (spatial scale) becomes longer (larger). The MJO has the most top-heavy profile while the eastward inertio-gravity (EIG) and westward inertio-gravity (WIG) waves have the most bottom-heavy profiles. The tilt ratio reveals that the Kelvin, WIG, EIG, and mixed Rossby–gravity (MRG) waves, categorized as convectively coupled gravity waves, have significant tilt in the omega profiles, while the equatorial Rossby (ER) wave and MJO, categorized as slow-moving moisture modes, have less tilt. The gross moist stability (GMS), cloud–radiation feedback, and effective GMS were also computed for each wave. The MJO with themore »most top-heavy omega profile exhibits high GMS, but has negative effective GMS due to strong cloud–radiation feedbacks. Similarly, the ER wave also exhibits negative effective GMS with a top-heavy omega profile. These results may indicate that top-heavy omega profiles build up more moist static energy via strong cloud–radiation feedbacks, and as a result, are more preferable for the moisture mode instability.

    « less
  5. A frequency–wavenumber power ([Formula: see text]) spectrum was constructed using satellite-derived outgoing longwave radiation (OLR) and brightness temperature for the tropical latitudes. Since the two datasets overlap for over 34 years with nonintersecting sources in error and compare relatively well with each other, it is possible to diagnose trends in the tropical wave activity from the two datasets with confidence. The results suggest a weakening trend in [Formula: see text] characterized by high interannual variability for wave activity occurring in the low-frequency part of the spectrum and a steady increase in [Formula: see text] with relatively low interannual variability for wave activity occurring in the high-frequency part of the spectrum. The results show the parts of the spectrum representing the Madden–Julian oscillation and equatorial Rossby wave losing [Formula: see text] and other parts of the spectrum representing Kelvin waves, mixed Rossby–gravity waves, and tropical disturbance–like wave activity gaining [Formula: see text]. Similar results were obtained when trends in variance corresponding to the first principal component were produced using spectrally filtered OLR data representative of atmospheric equatorial waves. Spatial trends in the active phase of wave events and the mean duration of events are also shown for the different wave types.more »Linear trends in [Formula: see text] for the entire spectrum and regional means in the spectrum corresponding to the abovementioned five wave types with confidence intervals are also presented in the paper. Finally, we demonstrate that El Niño–Southern Oscillation variability does not appear to control the overall spatial patterns and trends observed in the [Formula: see text] spectrum.

    « less