skip to main content


Title: Polymers with Side Chain Porosity for Ultrapermeable and Plasticization Resistant Materials for Gas Separations
Abstract

Polymer membranes with ultrahigh CO2permeabilities and high selectivities are needed to address some of the critical separation challenges related to energy and the environment, especially in natural gas purification and postcombustion carbon capture. However, very few solution‐processable, linear polymers are known today that access these types of characteristics, and all of the known structures achieve their separation performance through the design of rigid backbone chemistries that concomitantly increase chain stiffness and interchain spacing, thereby resulting in ultramicroporosity in solid‐state chain‐entangled films. Herein, the separation performance of a porous polymer obtained via ring‐opening metathesis polymerization is reported, which possesses a flexible backbone with rigid, fluorinated side chains. This polymer exhibits ultrahigh CO2permeability (>21 000 Barrer) and exceptional plasticization resistance (CO2plasticization pressure > 51 bar). Compared to traditional polymers of intrinsic microporosity, the rate of physical aging is slower, especially for gases with small effective diameters (i.e., He, H2, and O2). This structural design strategy, coupled with studies on fluorination, demonstrates a generalizable approach to create new polymers with flexible backbones and pore‐forming side chains that have unexplored promise for small‐molecule separations.

 
more » « less
Award ID(s):
1410718
NSF-PAR ID:
10461469
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
21
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The introduction of oligomeric polystyrene (PS) side chains into the conjugated backbone is proven to enhance the processability and electronic properties of semiconducting polymers. Here, two series of donor and acceptor polymers are prepared with different molar percentages of PS side chains to elucidate the effect of their substitution arrangement on the all‐polymer solar cell performance. The observed device performance is lower when the PS side chains are substituted on the donor polymer and higher when on the acceptor polymer, indicating a clear arrangement effect of the PS side chain. The incorporation of PS side chains to the acceptor polymer contributes to the decrease in phase separation domain size in the blend films. However, the reduced domain size was still an order of magnitude larger than the typical exciton diffusion length. A detailed morphological study together with the estimation of solubility parameter of the pristine PS, donor, and acceptor polymers reveals that the relative value of solubility parameter of each component dominantly contributes to the purity of the phase separated domain, which strongly impacts the amount of generated photocurrent and overall solar cell performance. This study provides an understanding of the design strategies to improve the all‐polymer solar cells.

     
    more » « less
  2. ABSTRACT

    Charge transport in conjugated polymers may be governed not only by the static microstructure but also fluctuations of backbone segments. Using molecular dynamics simulations, we predict the role of side chains in the backbone dynamics for regiorandom poly(3‐alkylthiophene‐2,5‐diyl)s (P3ATs). We show that the backbone of poly(3‐dodecylthiophene‐2‐5‐diyl) (P3DDT) moves faster than that of poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as a result of the faster motion of the longer side chains. To verify our predictions, we investigated the structures and dynamics of regiorandom P3ATs with neutron scattering and solid state NMR. Measurements of spin‐lattice relaxations (T1) using NMR support our prediction of faster motion for side chain atoms that are farther away from the backbone. Using small‐angle neutron scattering (SANS), we confirmed that regiorandom P3ATs are amorphous at about 300 K, although microphase separation between the side chains and backbones is apparent. Furthermore, quasi‐elastic neutron scattering (QENS) reveals that thiophene backbone motion is enhanced as the side chain length increases from hexyl to dodecyl. The faster motion of longer side chains leads to faster backbone dynamics, which in turn may affect charge transport for conjugated polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2018,56, 1193–1202

     
    more » « less
  3. Abstract

    Semiconducting donor–acceptor (D–A) polymers have attracted considerable attention toward the application of organic electronic and optoelectronic devices. However, a rational design rule for making semiconducting polymers with desired thermal and mechanical properties is currently lacking, which greatly limits the development of new polymers for advanced applications. Here, polydiketopyrrolopyrrole (PDPP)‐based D–A polymers with varied alkyl side‐chain lengths and backbone moieties are systematically designed, followed by investigating their thermal and thin film mechanical responses. The experimental results show a reduction in both elastic modulus and glass transition temperature (Tg) with increasing side‐chain length, which is further verified through coarse‐grained molecular dynamics simulations. Informed from experimental results, a mass‐per‐flexible bond model is developed to capture such observation through a linear correlation betweenTgand polymer chain flexibility. Using this model, a wide range of backboneTgover 80 °C and elastic modulus over 400 MPa can be predicted for PDPP‐based polymers. This study highlights the important role of side‐chain structure in influencing the thermomechanical performance of conjugated polymers, and provides an effective strategy to design and predictTgand elastic modulus of future new D–A polymers.

     
    more » « less
  4. Abstract

    Membrane‐based gas separations are crucial for an energy‐efficient future. However, it is difficult to develop membrane materials that are high‐performing, scalable, and processable. Microporous organic polymers (MOPs) combine benefits for gas sieving and solution processability. Herein, we report membrane performance for a new family of microporous poly(arylene ether)s (PAEs) synthesized via Pd‐catalyzed C−O coupling reactions. The scaffold of these microporous polymers consists of rigid three‐dimensional triptycene and stereocontorted spirobifluorene, endowing these polymers with micropore dimensions attractive for gas separations. This robust PAE synthesis method allows for the facile incorporation of functionalities and branched linkers for control of permeation and mechanical properties. A solution‐processable branched polymer was formed into a submicron film and characterized for permeance and selectivity, revealing lab data that rivals property sets of commercially available membranes already optimized for much thinner configurations. Moreover, the branching motif endows these materials with outstanding plasticization resistance, and their microporous structure and stability enables benefits from competitive sorption, increasing CO2/CH4and (H2S+CO2)/CH4selectivity in mixture tests as predicted by the dual‐mode sorption model. The structural tunability, stability, and ease‐of‐processing suggest that this new platform of microporous polymers provides generalizable design strategies to form MOPs at scale for demanding gas separations in industry.

     
    more » « less
  5. Abstract

    Membrane‐based gas separations are crucial for an energy‐efficient future. However, it is difficult to develop membrane materials that are high‐performing, scalable, and processable. Microporous organic polymers (MOPs) combine benefits for gas sieving and solution processability. Herein, we report membrane performance for a new family of microporous poly(arylene ether)s (PAEs) synthesized via Pd‐catalyzed C−O coupling reactions. The scaffold of these microporous polymers consists of rigid three‐dimensional triptycene and stereocontorted spirobifluorene, endowing these polymers with micropore dimensions attractive for gas separations. This robust PAE synthesis method allows for the facile incorporation of functionalities and branched linkers for control of permeation and mechanical properties. A solution‐processable branched polymer was formed into a submicron film and characterized for permeance and selectivity, revealing lab data that rivals property sets of commercially available membranes already optimized for much thinner configurations. Moreover, the branching motif endows these materials with outstanding plasticization resistance, and their microporous structure and stability enables benefits from competitive sorption, increasing CO2/CH4and (H2S+CO2)/CH4selectivity in mixture tests as predicted by the dual‐mode sorption model. The structural tunability, stability, and ease‐of‐processing suggest that this new platform of microporous polymers provides generalizable design strategies to form MOPs at scale for demanding gas separations in industry.

     
    more » « less