Abstract Modeling the complex interactions of systems of particles or agents is a fundamental problem across the sciences, from physics and biology, to economics and social sciences. In this work, we consider second-order, heterogeneous, multivariable models of interacting agents or particles, within simple environments. We describe a nonparametric inference framework to efficiently estimate the latent interaction kernels which drive these dynamical systems. We develop a learning theory which establishes strong consistency and optimal nonparametric min–max rates of convergence for the estimators, as well as provably accurate predicted trajectories. The optimal rates only depends on intrinsic dimension of interactions, which is typically much smaller than the ambient dimension. Our arguments are based on a coercivity condition which ensures that the interaction kernels can be estimated in stable fashion. The numerical algorithm presented to build the estimators is parallelizable, performs well on high-dimensional problems, and its performance is tested on a variety of complex dynamical systems.
more »
« less
Layer-Wise Learning Strategy for Nonparametric Tensor Product Smoothing Spline Regression and Graphical Models
Nonparametric estimation of multivariate functions is an important problem in statisti- cal machine learning with many applications, ranging from nonparametric regression to nonparametric graphical models. Several authors have proposed to estimate multivariate functions under the smoothing spline analysis of variance (SSANOVA) framework, which assumes that the multivariate function can be decomposed into the summation of main effects, two-way interaction effects, and higher order interaction effects. However, existing methods are not scalable to the dimension of the random variables and the order of inter- actions. We propose a LAyer-wiSE leaRning strategy (LASER) to estimate multivariate functions under the SSANOVA framework. The main idea is to approximate the multivari- ate function sequentially starting from a model with only the main effects. Conditioned on the support of the estimated main effects, we estimate the two-way interaction effects only when the corresponding main effects are estimated to be non-zero. This process is con- tinued until no more higher order interaction effects are identified. The proposed strategy provides a data-driven approach for estimating multivariate functions under the SSANOVA framework. Our proposal yields a sequence of estimators. To study the theoretical prop- erties of the sequence of estimators, we establish the notion of post-selection persistency. Extensive numerical studies are performed to evaluate the performance of LASER.
more »
« less
- Award ID(s):
- 1949730
- PAR ID:
- 10148246
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 20
- Issue:
- 119
- ISSN:
- 1532-4435
- Page Range / eLocation ID:
- 1-38
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ratio of the hazard functions of two populations or two strata of a single population plays an important role in time-to-event analysis. Cox regression is commonly used to estimate the hazard ratio under the assumption that it is constant in time, which is known as the proportional hazards assumption. However, this assumption is often violated in practice, and when it is violated, the parameter estimated by Cox regression is difficult to interpret. The hazard ratio can be estimated in a nonparametric manner using smoothing, but smoothing-based estimators are sensitive to the selection of tuning parameters, and it is often difficult to perform valid inference with such estimators. In some cases, it is known that the hazard ratio function is monotone. In this article, we demonstrate that monotonicity of the hazard ratio function defines an invariant stochastic order, and we study the properties of this order. Furthermore, we introduce an estimator of the hazard ratio function under a monotonicity constraint. We demonstrate that our estimator converges in distribution to a mean-zero limit, and we use this result to construct asymptotically valid confidence intervals. Finally, we conduct numerical studies to assess the finite-sample behavior of our estimator, and we use our methods to estimate the hazard ratio of progression-free survival in pulmonary adenocarcinoma patients treated with gefitinib or carboplatin-paclitaxel.more » « less
-
Density estimation is a building block for many other statistical methods, such as classification, nonparametric testing, and data compression. In this paper, we focus on a nonparametric approach to multivariate density estimation, and study its asymptotic properties under both frequentist and Bayesian settings. The estimated density function is obtained by considering a sequence of approximating spaces to the space of densities. These spaces consist of piecewise constant density functions supported by binary partitions with increasing complexity. To obtain an estimate, the partition is learned by maximizing either the likelihood of the corresponding histogram on that partition, or the marginal posterior probability of the partition under a suitable prior. We analyze the convergence rate of the maximum likelihood estimator and the posterior concentration rate of the Bayesian estimator, and conclude that for a relatively rich class of density functions the rate does not directly depend on the dimension. We also show that the Bayesian method can adapt to the unknown smoothness of the density function. The method is applied to several specific function classes and explicit rates are obtained. These include spatially sparse functions, functions of bounded variation, and Holder continuous functions. We also introduce an ensemble approach, obtained by aggregating multiple density estimates fit under carefully designed perturbations, and show that for density functions lying in a Holder space (H^(1,β), 0 < β ≤ 1), the ensemble method can achieve minimax convergence rate up to a logarithmic term, while the corresponding rate of the density estimator based on a single partition is suboptimal for this function class.more » « less
-
Many recent developments in causal inference, and functional estimation problems more generally, have been motivated by the fact that classical one-step (first-order) debiasing methods, or their more recent sample-split double machine-learning avatars, can outperform plugin estimators under surprisingly weak conditions. These first-order corrections improve on plugin estimators in a black-box fashion, and consequently are often used in conjunction with powerful off-the-shelf estimation methods. These first-order methods are however provably suboptimal in a minimax sense for functional estimation when the nuisance functions live in Holder-type function spaces. This suboptimality of first-order debiasing has motivated the development of "higher-order" debiasing methods. The resulting estimators are, in some cases, provably optimal over Holder-type spaces, but both the estimators which are minimax-optimal and their analyses are crucially tied to properties of the underlying function space. In this paper we investigate the fundamental limits of structure-agnostic functional estimation, where relatively weak conditions are placed on the underlying nuisance functions. We show that there is a strong sense in which existing first-order methods are optimal. We achieve this goal by providing a formalization of the problem of functional estimation with black-box nuisance function estimates, and deriving minimax lower bounds for this problem. Our results highlight some clear tradeoffs in functional estimation -- if we wish to remain agnostic to the underlying nuisance function spaces, impose only high-level rate conditions, and maintain compatibility with black-box nuisance estimators then first-order methods are optimal. When we have an understanding of the structure of the underlying nuisance functions then carefully constructed higher-order estimators can outperform first-order estimators.more » « less
-
Density estimation is a building block for many other statistical methods, such as classification, nonparametric testing, and data compression. In this paper, we focus on a non-parametric approach to multivariate density estimation, and study its asymptotic properties under both frequentist and Bayesian settings. The estimated density function is obtained by considering a sequence of approximating spaces to the space of densities. These spaces consist of piecewise constant density functions supported by binary partitions with increasing complexity. To obtain an estimate, the partition is learned by maximizing either the likelihood of the corresponding histogram on that partition, or the marginal posterior probability of the partition under a suitable prior. We analyze the convergence rate of the maximum likelihood estimator and the posterior concentration rate of the Bayesian estimator, and conclude that for a relatively rich class of density functions the rate does not directly depend on the dimension. We also show that the Bayesian method can adapt to the unknown smoothness of the density function. The method is applied to several specific function classes and explicit rates are obtained. These include spatially sparse functions, functions of bounded variation, and Holder continuous functions. We also introduce an ensemble approach, obtained by aggregating multiple density estimates fit under carefully designed perturbations, and show that for density functions lying in a Holder space (H^(1,β),0<β≤1), the ensemble method can achieve minimax convergence rate up to a logarithmic term, while the corresponding rate of the density estimator based on a single partition is suboptimal for this function class.more » « less
An official website of the United States government

