skip to main content


Title: Individual differences in relational reasoning
Various forms of relational processing have been linked to cognitive capacity measures, such as working memory and fluid intelligence. However, previous work has not established the extent to which different forms of relational processing reflect common factors, nor whether individual differences in cognitive style also contribute to variations in relational reasoning. The current study took an individual-differences approach to investigate the prerequisites for relational processing. In two studies, college students completed a battery of standardized tests of individual differences related to fluid intelligence and cognitive style, as well as a series of experimental tasks that require relational reasoning. Moderate correlations were obtained between relational processing and measures of cognitive capacity. Questionnaire measures of cognitive style generally did not improve predictions of relational processing beyond the influence of measures of cognitive capacity.  more » « less
Award ID(s):
1827374
NSF-PAR ID:
10148740
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Memory cognition
Volume:
48
Issue:
1
ISSN:
0090-502X
Page Range / eLocation ID:
96-110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability to recognize and make inductive inferences based on relational similarity is fundamental to much of human higher cognition. However, relational similarity is not easily defined or measured, which makes it difficult to determine whether individual differences in cognitive capacity or semantic knowledge impact relational processing. In two experiments, we used a multi-arrangement task (previously applied to individual words or objects) to efficiently assess similarities between word pairs instantiating various abstract relations. Experiment 1 established that the method identifies word pairs expressing the same relation as more similar to each other than to those expressing different relations. Experiment 2 extended these results by showing that relational similarity measured by the multi-arrangement task is sensitive to more subtle distinctions. Word pairs instantiating the same specific subrelation were judged as more similar to each other than to those instantiating different subrelations within the same general relation type. In addition, Experiment 2 found that individual differences in both fluid intelligence and crystalized verbal intelligence correlated with differentiation of relation similarity judgments. 
    more » « less
  2. Abstract

    Reasoning, our ability to solve novel problems, has been shown to improve as a result of learning experiences. However, the underlying mechanisms of change in this high-level cognitive ability are unclear. We hypothesized that possible mechanisms include improvements in the encoding, maintenance, and/or integration of relations among mental representations – i.e., relational thinking. Here, we developed several eye gaze metrics to pinpoint learning mechanisms that underpin improved reasoning performance. We collected behavioral and eyetracking data from young adults who participated in a Law School Admission Test preparation course involving word-based reasoning problems or reading comprehension. The Reasoning group improved more than the Comprehension group on a composite measure of four visuospatial reasoning assessments. Both groups improved similarly on an eyetracking paradigm involving transitive inference problems, exhibiting faster response times while maintaining high accuracy levels; nevertheless, the Reasoning group exhibited a larger change than the Comprehension group on an ocular metric of relational thinking. Across the full sample, individual differences in response time reductions were associated with increased efficiency of relational thinking. Accounting for changes in visual search and a more specific measure of relational integration improved the prediction accuracy of the model, but changes in these two processes alone did not adequately explain behavioral improvements. These findings provide evidence of transfer of learning across different kinds of reasoning problems after completing a brief but intensive course. More broadly, the high temporal precision and rich derivable parameters of eyetracking make it a powerful approach for probing learning mechanisms.

     
    more » « less
  3. Abstract Research Highlights

    Relational thinking, the process of identifying and integrating relations, develops over childhood and is central to reasoning.

    We collected data from nearly 1000 elementary and middle schoolers on a test of relational thinking, ten standard executive function tasks, and two math tests.

    Relational thinking predicts unique variance in math achievement not accounted for by canonical EFs throughout middle childhood.

    We propose that relational thinking should be conceptualized as a core executive function that supports cognitive development and learning.

     
    more » « less
  4. Abstract

    We examined the relationship between metaphor comprehension and verbal analogical reasoning in young adults who were either typically developing (TD) or diagnosed with Autism Spectrum Disorder (ASD). The ASD sample was highly educated and high in verbal ability, and closely matched to a subset of TD participants on age, gender, educational background, and verbal ability. Additional TD participants with a broader range of abilities were also tested. Each participant solved sets of verbal analogies and metaphors in verification formats, allowing measurement of both accuracy and reaction times. Measures of individual differences in vocabulary, verbal working memory, and autistic traits were also obtained. Accuracy for both the verbal analogy and the metaphor task was very similar across the ASD and matched TD groups. However, reaction times on both tasks were longer for the ASD group. Additionally, stronger correlations between verbal analogical reasoning and working memory capacity in the ASD group indicated that processing verbal analogies was more effortful for them. In the case of both groups, accuracy on the metaphor and analogy tasks was correlated. A mediation analysis revealed that after controlling for working memory capacity, the inter‐task correlation could be accounted for by the mediating variable of vocabulary knowledge, suggesting that the primary common mechanisms linking the two tasks involve language skills.

     
    more » « less
  5. Abstract Expert testimony varies in scientific quality and jurors have a difficult time evaluating evidence quality (McAuliff et al., 2009). In the current study, we apply Fuzzy Trace Theory principles, examining whether visual and gist aids help jurors calibrate to the strength of scientific evidence. Additionally we were interested in the role of jurors’ individual differences in scientific reasoning skills in their understanding of case evidence. Contrary to our preregistered hypotheses, there was no effect of evidence condition or gist aid on evidence understanding. However, individual differences between jurors’ numeracy skills predicted evidence understanding. Summary Poor-quality expert evidence is sometimes admitted into court (Smithburn, 2004). Jurors’ calibration to evidence strength varies widely and is not robustly understood. For instance, previous research has established jurors lack understanding of the role of control groups, confounds, and sample sizes in scientific research (McAuliff, Kovera, & Nunez, 2009; Mill, Gray, & Mandel, 1994). Still others have found that jurors can distinguish weak from strong evidence when the evidence is presented alone, yet not when simultaneously presented with case details (Smith, Bull, & Holliday, 2011). This research highlights the need to present evidence to jurors in a way they can understand. Fuzzy Trace Theory purports that people encode information in exact, verbatim representations and through “gist” representations, which represent summary of meaning (Reyna & Brainerd, 1995). It is possible that the presenting complex scientific evidence to people with verbatim content or appealing to the gist, or bottom-line meaning of the information may influence juror understanding of that evidence. Application of Fuzzy Trace Theory in the medical field has shown that gist representations are beneficial for helping laypeople better understand risk and benefits of medical treatment (Brust-Renck, Reyna, Wilhelms, & Lazar, 2016). Yet, little research has applied Fuzzy Trace Theory to information comprehension and application within the context of a jury (c.f. Reyna et. al., 2015). Additionally, it is likely that jurors’ individual characteristics, such as scientific reasoning abilities and cognitive tendencies, influence their ability to understand and apply complex scientific information (Coutinho, 2006). Methods The purpose of this study was to examine how jurors calibrate to the strength of scientific information, and whether individual difference variables and gist aids inspired by Fuzzy Trace Theory help jurors better understand complicated science of differing quality. We used a 2 (quality of scientific evidence: high vs. low) x 2 (decision aid to improve calibration - gist information vs. no gist information), between-subjects design. All hypotheses were preregistered on the Open Science Framework. Jury-eligible community participants (430 jurors across 90 juries; Mage = 37.58, SD = 16.17, 58% female, 56.93% White). Each jury was randomly assigned to one of the four possible conditions. Participants were asked to individually fill out measures related to their scientific reasoning skills prior to watching a mock jury trial. The trial was about an armed bank robbery and consisted of various pieces of testimony and evidence (e.g. an eyewitness testimony, police lineup identification, and a sweatshirt found with the stolen bank money). The key piece of evidence was mitochondrial DNA (mtDNA) evidence collected from hair on a sweatshirt (materials from Hans et al., 2011). Two experts presented opposing opinions about the scientific evidence related to the mtDNA match estimate for the defendant’s identification. The quality and content of this mtDNA evidence differed based on the two conditions. The high quality evidence condition used a larger database than the low quality evidence to compare to the mtDNA sample and could exclude a larger percentage of people. In the decision aid condition, experts in the gist information group presented gist aid inspired visuals and examples to help explain the proportion of people that could not be excluded as a match. Those in the no gist information group were not given any aid to help them understand the mtDNA evidence presented. After viewing the trial, participants filled out a questionnaire on how well they understood the mtDNA evidence and their overall judgments of the case (e.g. verdict, witness credibility, scientific evidence strength). They filled this questionnaire out again after a 45-minute deliberation. Measures We measured Attitudes Toward Science (ATS) with indices of scientific promise and scientific reservations (Hans et al., 2011; originally developed by National Science Board, 2004; 2006). We used Drummond and Fischhoff’s (2015) Scientific Reasoning Scale (SRS) to measure scientific reasoning skills. Weller et al.’s (2012) Numeracy Scale (WNS) measured proficiency in reasoning with quantitative information. The NFC-Short Form (Cacioppo et al., 1984) measured need for cognition. We developed a 20-item multiple-choice comprehension test for the mtDNA scientific information in the cases (modeled on Hans et al., 2011, and McAuliff et al., 2009). Participants were shown 20 statements related to DNA evidence and asked whether these statements were True or False. The test was then scored out of 20 points. Results For this project, we measured calibration to the scientific evidence in a few different ways. We are building a full model with these various operationalizations to be presented at APLS, but focus only on one of the calibration DVs (i.e., objective understanding of the mtDNA evidence) in the current proposal. We conducted a general linear model with total score on the mtDNA understanding measure as the DV and quality of scientific evidence condition, decision aid condition, and the four individual difference measures (i.e., NFC, ATS, WNS, and SRS) as predictors. Contrary to our main hypotheses, neither evidence quality nor decision aid condition affected juror understanding. However, the individual difference variables did: we found significant main effects for Scientific Reasoning Skills, F(1, 427) = 16.03, p <.001, np2 = .04, Weller Numeracy Scale, F(1, 427) = 15.19, p <.001, np2 = .03, and Need for Cognition, F(1, 427) = 16.80, p <.001, np2 = .04, such that those who scored higher on these measures displayed better understanding of the scientific evidence. In addition there was a significant interaction of evidence quality condition and scores on the Weller’s Numeracy Scale, F(1, 427) = 4.10, p = .04, np2 = .01. Further results will be discussed. Discussion These data suggest jurors are not sensitive to differences in the quality of scientific mtDNA evidence, and also that our attempt at helping sensitize them with Fuzzy Trace Theory-inspired aids did not improve calibration. Individual scientific reasoning abilities and general cognition styles were better predictors of understanding this scientific information. These results suggest a need for further exploration of approaches to help jurors differentiate between high and low quality evidence. Note: The 3rd author was supported by an AP-LS AP Award for her role in this research. Learning Objective: Participants will be able to describe how individual differences in scientific reasoning skills help jurors understand complex scientific evidence. 
    more » « less