Numerous studies have examined the reliability of various precipitation products over the Mekong River Basin (MRB) and modeled its basin hydrology. However, there is a lack of comprehensive studies on precipitation‐induced uncertainties in hydrological simulations using process‐based land surface models. This study examines the propagation of precipitation uncertainty into hydrological simulations over the entire MRB using the Community Land Model version 5 (CLM5) at a high spatial resolution of 0.05° (∼5 km) and without any parameter calibration. Simulations conducted using different precipitation datasets are compared to investigate the discrepancies in streamflow, terrestrial water storage (TWS), soil moisture, and evapotranspiration (ET) caused by precipitation uncertainty. Results indicate that precipitation is a key determinant of simulated streamflow in the MRB; peak flow and soil moisture are particularly sensitive to precipitation input. Further, precipitation data with a higher spatial resolution did not improve the simulations, contrary to the common perception that using meteorological forcing with higher spatial resolution would improve hydrological simulations. In addition, since high flow indicators are particularly influenced by precipitation data, the choice of precipitation data could directly impact flood pulse simulations in the MRB. Notable differences are also found among TWS, soil moisture, and ET simulated using different precipitation products. Moreover, TWS, soil moisture, and ET exhibit a varying degree of sensitivity to precipitation uncertainty. This study provides crucial insights on precipitation‐induced uncertainties in process‐based hydrological modeling and uncovers these uncertainties in the MRB.
Water resources reanalysis (WRR) can be used as a numerical tool to advance our understanding of hydrological processes where in situ observations are limited. However, WRR products are associated with uncertainty that needs to be quantified to improve usability of such products in water resources applications. In this study, we evaluate estimates of water cycle components from 18 state-of-the-art WRR datasets derived from different land surface/hydrological models, meteorological forcing, and precipitation datasets. The evaluation was conducted at three spatial scales in the upper Blue Nile basin in Ethiopia. Precipitation, streamflow, evapotranspiration (ET), and terrestrial water storage (TWS) were evaluated against in situ daily precipitation and streamflow measurements, remote sensing–derived ET, and the NASA Gravity Recovery and Climate Experiment (GRACE) product, respectively. Our results highlight the current strengths and limitations of the available WRR datasets in analyzing the hydrological cycle and dynamics of the study basins, showing an overall underestimation of ET and TWS and overestimation of streamflow. While calibration improves streamflow simulation, it results in a relatively poorer performance in terms of ET. In addition, we show that the differences in the schemes used in the various land surface models resulted in significant differences in the estimation of the water cycle components from the respective WRR products, while we noted small differences among the products related to precipitation forcing. We did not identify a single product that consistently outperformed others; however, we found that there are specific WRR products that provided accurate representation of a single component of the water cycle (e.g., only runoff) in the area.
more » « less- PAR ID:
- 10148826
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Hydrometeorology
- Volume:
- 21
- Issue:
- 5
- ISSN:
- 1525-755X
- Page Range / eLocation ID:
- p. 935-952
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Precipitation is the primary driver of hydrological models, and its spatial and temporal variability have a great impact on water partitioning. However, in data‐sparse regions, uncertainty in precipitation estimates is high and the sensitivity of water partitioning to this uncertainty is unknown. This is a particular challenge in drylands (semi‐arid and arid regions) where the water balance is highly sensitive to rainfall, yet there is commonly a lack of in situ rain gauge data. To understand the impact of precipitation uncertainty on the water balance in drylands, here we have performed simulations with a process‐based hydrological model developed to characterize the water balance in arid and semi‐arid regions (DRYP: DRYland water Partitioning model). We performed a series of numerical analyses in the Upper Ewaso Ng'iro basin, Kenya driven by three gridded precipitation datasets with different spatio‐temporal resolutions (IMERG, MSWEP, and ERA5), evaluating simulations against streamflow observations and remotely sensed data products of soil moisture, actual evapotranspiration, and total water storage. We found that despite the great differences in the spatial distribution of rainfall across a climatic gradient within the basin, DRYP shows good performance for representing streamflow (KGE >0.6), soil moisture, actual evapotranspiration, and total water storage (
r >0.5). However, the choice of precipitation datasets greatly influences surface (infiltration, runoff, and transmission losses) and subsurface fluxes (groundwater recharge and discharge) across different climatic zones of the Ewaso Ng'iro basin. Within humid areas, evapotranspiration does not show sensitivity to the choice of precipitation dataset, however, in dry lowland areas it becomes more sensitive to precipitation rates as water‐limited conditions develop. The analysis shows that the highest rates of precipitation produce high rates of diffuse recharge in Ewaso uplands and also propagate into runoff, transmission losses and, ultimately focused recharge, with the latter acting as the main mechanism of groundwater recharge in low dry areas. The results from this modelling exercise suggest that care must be taken in selecting forcing precipitation data to drive hydrological modelling efforts, especially in basins that span a climatic gradient. These results also suggest that more effort is required to reduce uncertainty between different precipitation datasets, which will in turn result in more consistent quantification of the water balance. -
Abstract The land surface hydrology of the North American Great Lakes region regulates ecosystem water availability, lake levels, vegetation dynamics, and agricultural practices. In this study, we analyze the Great Lakes terrestrial water budget using the Noah‐MP land surface model to characterize the catchment hydrological regimes and identify the dominant quantities contributing to the variability in the land surface hydrology. We show that the Great Lakes domain is not hydrologically uniform and strong spatiotemporal differences exist in the regulators of the hydrological budget at daily, monthly, and annual timescales. Subseasonally, precipitation and soil moisture explain nearly all the terrestrial water budget variability in the southern basins, while the northern latitudes are snow‐dominated regimes. Seasonal assessments reveal greater differences among the basins. Precipitation, evaporation, and runoff are the dominant sources of variability at lower latitudes, while at higher latitudes, terrestrial water storage in the form of ground snowpack and soil moisture has the leading role. Differences in land cover categorizations, for example, croplands, forests, or urban zones, further induce spatial differences in the hydrological characteristics. This quantification of variability in the terrestrial water cycle embedded at different temporal scales is important to assess the impacts of changes in climate and land cover on catchment sensitivities across the diverse hydroclimate of the Great Lakes region.
-
Abstract. Streamflow regimes are rapidly changing in many regions of the world. Attribution of these changes to specific hydrological processes and their underlying climatic and anthropogenic drivers is essential to formulate an effective water policy. Traditional approaches to hydrologic attribution rely on the ability to infer hydrological processes through the development of catchment-scale hydrological models. However, such approaches are challenging to implement in practice due to limitations in using models to accurately associate changes in observed outcomes with corresponding drivers. Here we present an alternative approach that leverages the method of multiple hypotheses to attribute changes in streamflow in the Upper Jhelum watershed, an important tributary headwater region of the Indus basin, where a dramatic decline in streamflow since 2000 has yet to be adequately attributed to its corresponding drivers. We generate and empirically evaluate a series of alternative and complementary hypotheses concerning distinct components of the water balance. This process allows a holistic understanding of watershed-scale processes to be developed, even though the catchment-scale water balance remains open. Using remote sensing and secondary data, we explore changes in climate, surface water, and groundwater. The evidence reveals that climate, rather than land use, had a considerably stronger influence on reductions in streamflow, both through reduced precipitation and increased evapotranspiration. Baseflow analyses suggest different mechanisms affecting streamflow decline in upstream and downstream regions, respectively. These findings offer promising avenues for future research in the Upper Jhelum watershed, and an alternative approach to hydrological attribution in data-scarce regions.more » « less
-
Abstract Accurate precipitation estimates are critical to simulating seasonal snowpack evolution. We conduct and evaluate high‐resolution (4‐km) snowpack simulations over the western United States (WUS) mountains in Water Year 2013 using the Noah with multi‐parameterization (Noah‐MP) land surface model driven by precipitation forcing from convection‐permitting (4‐km) Weather Research and Forecasting (WRF) modeling and four widely used high‐resolution datasets that are derived from statistical interpolation based on in situ measurements. Substantial differences in the precipitation amount among these five datasets, particularly over the western and northern portions of WUS mountains, significantly affect simulated snow water equivalent (SWE) and snow depth (SD) but have relatively limited effects on snow cover fraction (SCF) and surface albedo. WRF generally captures observed precipitation patterns and results in an overall best‐performed SWE and SD in the western and northern portions of WUS mountains, where the statistically interpolated datasets lead to underpredicted precipitation, SWE, and SD. Over the interior WUS mountains, all the datasets consistently underestimate precipitation, causing significant negative biases in SWE and SD, among which the results driven by the WRF precipitation show an average performance. Further analysis reveals systematic positive biases in SCF and surface albedo across the WUS mountains, with similar bias patterns and magnitudes for simulations driven by different precipitation datasets, suggesting an urgent need to improve the Noah‐MP snowpack physics. This study highlights that convection‐permitting modeling with proper configurations can have added values in providing decent precipitation for high‐resolution snowpack simulations over the WUS mountains in a typical ENSO‐neutral year, particularly over observation‐scarce regions.