skip to main content

Title: Intrinsic Polymer Dielectrics for High Energy Density and Low Loss Electric Energy Storage
High energy density, high temperature, and low loss polymer dielectrics are highly desirable for electric energy storage, e.g., film capacitors in the power electronics of electric vehicles and high-speed trains. Fundamentally, high polarization and low dielectric loss are two conflicting physical properties, because more polarization processes will involve more loss mechanisms. As such, we can only achieve a delicate balance between high dielectric constant and reasonably low loss. This review focuses on achieving low dielectric loss while trying to enhance dielectric constants for dielectric polymers, which can be divided into two categories: extrinsic and intrinsic. For extrinsic dielectric systems, the working mechanisms include dipolar (e.g., nanodielectrics) and space charge (e.g., ion gels) interfacial polarizations. These polarizations do not increase the intrinsic dielectric constants, but cause decreased breakdown strength and increased dielectric loss for polymers. For intrinsic dielectric polymers, the dielectric constant originates from electronic, atomic (or vibrational), and orientational polarizations, which are intrinsic to the polymers themselves. Because of the nature of molecular bonding for organic polymers, the dielectric constant from electronic and atomic polarizations is limited to 2-5 for hydrocarbon-based insulators (i.e., band gap > 4 eV). It is possible to use orientational polarization to enhance intrinsic dielectric constant more » while keeping reasonably low loss. However, nonlinear ferroelectric switching in ferroelectric polymers must be avoided. Meanwhile, paraelectric polymers often exhibit high electronic conduction due to large chain motion in the paraelectric phase. In this sense, dipolar glass polymers are more attractive for low loss dielectrics, because frozen chain dynamics enables deep traps to prevent electronic conduction. Both side-chain and main-chain dipolar glass polymers are promising candidates. Furthermore, it is possible to combine intrinsic and extrinsic dielectric properties synergistically in multilayer films to enhance breakdown strength and further reduce dielectric loss for high dielectric constant polar polymers. At last, future research directions are briefly discussed for the ultimate realization of next generation polymer film capacitors. « less
Award ID(s):
Publication Date:
Journal Name:
Progress in polymer science
Sponsoring Org:
National Science Foundation
More Like this
  1. Dielectric capacitors can store and release electric energy at ultrafast rates and are extensively studied for applications in electronics and electric power systems. Among various candidates, thin films based on relaxor ferroelectrics, a special kind of ferroelectric with nanometer-sized domains, have attracted special attention because of their high energy densities and efficiencies. We show that high-energy ion bombardment improves the energy storage performance of relaxor ferroelectric thin films. Intrinsic point defects created by ion bombardment reduce leakage, delay low-field polarization saturation, enhance high-field polarizability, and improve breakdown strength. We demonstrate energy storage densities as high as ~133 joules per cubic centimeter with efficiencies exceeding 75%. Deterministic control of defects by means of postsynthesis processing methods such as ion bombardment can be used to overcome the trade-off between high polarizability and breakdown strength.

  2. Advanced polymers with high energy density and high efficiency are urgently needed in pulse power capacitor applications. Here, we present a practical design approach towards all-organic polymers with high energy density and high efficiency by enhancing dipolar polarization at the molecular level. Flexible segments were introduced into the backbones of rigid polar aromatic polymers to increase the flexibility of dipoles. Dielectric spectroscopy measurements of designed polymers revealed multiple strong sub-glass transition (sub- T g ) relaxation peaks with low activation energies, which indicated the enhanced movement freedom of dipoles below the glass transition temperature. As a result, dielectric constants were increased up to 46% when compared with their base polymers and D – E loop measurements showed that all these designed polymers had high energy densities above 11 J cm −3 with efficiencies above 90%. These results unveiled a novel approach towards high dielectric constant organic polymers for electrical energy storage.
  3. In response to the stringent requirements for future DC-link capacitors in electric vehicles (EVs), it is desirable to develop dielectric polymer films with high-temperature tolerance (at least 105 °C) and low loss (dissipation factor, tan δ < 0.003). Although the biaxially oriented poly(ethylene terephthalate) (BOPET) film has an alleged temperature rating of 120 °C, its dielectric performance in terms of breakdown strength and lifetime cannot satisfy the stringent requirements for power electronics in EVs. In this work, we carried out a structure–electrical insulation property relationship study to understand the working mechanism for various PET films, including a commercial BOPET film, an amorphous PET (AmPET) film, and two annealed PET films (AnPET, i.e., cold-crystallized from AmPET). Structural analyses revealed a uniform edge-on crystalline orientation in BOPET with the a* axis in the film normal direction. Meanwhile, a high content of the rigid amorphous fraction (RAF) was identified for BOPET, which resulted from biaxial stretching during processing. On the contrary, AnPET films had a random crystal orientation with lower RAF contents. From dielectric breakdown and lifetime studies, the high-crystallinity AnPET film exhibited better electrical insulation than BOPET, and AmPET had the worst electrical insulation. Electrical conductivity results revealed that the high RAF contentmore »in BOPET led to reasonably high breakdown strength and long lifetime only at low temperatures (<100 °C). Meanwhile, PET crystals were more insulating than the amorphous phase, whether mobile, rigid, or glassy. In particular, the flat-on lamellae in the AnPET film were more effective than the edge-on lamellae in BOPET in blocking the conduction of charge carriers (electrons and impurity ions). This understanding will help us design high-temperature semicrystalline polymer films for DC-link capacitors in EVs.« less
  4. High performance polymer dielectrics are a key component for printed electronics. In this work, organo-soluble polymers of intrinsic microporosity (PIMs) are reported for the first time to demonstrate desirable dielectric properties with a high permittivity (or κ ), heat resistance, and low dielectric loss simultaneously. Due to the highly dipolar sulfonyl side groups (4.5 D) and rigid contorted polymer backbone, a sulfonylated PIM (SO 2 -PIM) enabled friction-free rotation of sulfonyl dipoles in the nanopores. As such, an optimal balance between relatively high κ and low dielectric loss is achieved in a broad temperature window (−50–200 °C). For example, the discharged energy density reached 17 J cm −3 with κ = 6.0. The discharge efficiency was 94% at 150 °C/300 MV m −1 and 88% at 200 °C/200 MV m −1 . Furthermore, its application as a high- κ gate dielectric in field effect transistors (FETs) is demonstrated. With the bilayer SO 2 -PIM/SiO 2 gate dielectric, InSe FETs exhibited a high electron mobility in the range of 200–400 cm 2 V −1 s −1 , as compared to 40 cm 2 V −1 s −1 for the bare SiO 2 -gated InSe FET. This study indicates that highly dipolarmore »PIMs with a rigid polymer backbone and large free volume are promising as next generation gate dielectric materials for printed electronics.« less
  5. Polymer nanocomposites exhibit unique effective properties that do not follow conventional effective media approaches. The nanoparticle-polymer interphase has been shown to strongly influence the nanocomposites behavior due o its significant volume when the particles are nano-sized, affording an opportunity to tune the dielectric response of the resulting nanocomposite. In this study, we investigate the effects of TiO2 nanoparticles on the electrical properties and the charges distribution and transport in polydimethylsiloxane (PDMS) nanocomposites. Impedance spectroscopy shows suppression of interfacial Maxwell-Wagner-Sillars (MWS) polarization accompanied by a reduction in the low frequency dielectric permittivity and loss at high temperatures in the presence of the TiO2 nanoparticles. Thermally stimulated discharge current measurements confirm that the suppression of the interfacial polarization relaxations happens by redistributing or depleting the charges through the composite and hindering their mobility, potentially resulting in lower electrical conduction and higher breakdown strength. Although the model materials investigated here are TiO2 nanoparticles and Sylgard 184 PDMS, our findings can be extended to other nanoparticulate-filled elastomer composites to design lightweight dielectrics, actuators and sensors with improved capabilities.