Abstract BackgroundHybridization between evolutionary lineages has profound impacts on the fitness and ecology of hybrid progeny. In extreme cases, the effects of hybridization can transcend ecological timescales by introducing trait novelty upon which evolution can act. Indeed, hybridization can even have macroevolutionary consequences, for example, as a driver of adaptive radiations and evolutionary innovations. Accordingly, hybridization is now recognized as a motor for macrobial evolution. By contrast, there has been substantially less progress made towards understanding the positive eco-evolutionary consequences of hybridization on holobionts. Rather, the emerging paradigm in holobiont literature is that hybridization disrupts symbiosis between a host lineage and its microbiome, leaving hybrids at a fitness deficit. These conclusions, however, have been drawn based on results from predominantly low-fitness hybrid organisms. Studying “dead-end” hybrids all but guarantees finding that hybridization is detrimental. This is the pitfall that Dobzhansky fell into over 80 years ago when he used hybrid sterility and inviability to conclude that hybridization hinders evolution. Goldschmidt, however, argued that rare saltational successes—so-called hopeful monsters—disproportionately drive positive evolutionary outcomes. Goldschmidt’s view is now becoming a widely accepted explanation for the prevalence of historical hybridization in extant macrobial lineages. Aligning holobiont research with this broader evolutionary perspective requires recognizing the importance of similar patterns in host–microbiome systems. That is, rare and successful “hopeful holobionts” (i.e., hopeful monsters at the holobiont scale) might be disproportionately responsible for holobiont evolution. If true, then it is these successful systems that we should be studying to assess impacts of hybridization on the macroevolutionary trajectories of host–microbiome symbioses. ResultsIn this paper, we explore the effects of hybridization on the gut (cloacal) and skin microbiota in an ecologically successful hybrid lizard,Aspidoscelis neomexicanus. Specifically, we test the hypothesis that hybrid lizards have host-associated (HA) microbiota traits strongly differentiated from their progenitor species. Across numerous hybrid microbiota phenotypes, we find widespread evidence of transgressive segregation. Further, microbiota restructuring broadly correlates with niche restructuring during hybridization. This suggests a relationship between HA microbiota traits and ecological success. ConclusionTransgressive segregation of HA microbiota traits is not only limited to hybrids at a fitness deficit but also occurs in ecologically successful hybrids. This suggests that hybridization may be a mechanism for generating novel and potentially beneficial holobiont phenotypes. Supporting such a conclusion, the correlations that we find between hybrid microbiota and the hybrid niche indicate that hybridization might change host microbiota in ways that promote a shift or an expansion in host niche space. If true, hybrid microbiota restructuring may underly ecological release from progenitors. This, in turn, could drive evolutionary diversification. Using our system as an example, we elaborate on the evolutionary implications of host hybridization within the context of holobiont theory and then outline the next steps for understanding the role of hybridization in holobiont research.
more »
« less
What is the hologenome concept of evolution?
All multicellular organisms are colonized by microbes, but a gestalt study of the composition of microbiome communities and their influence on the ecology and evolution of their macroscopic hosts has only recently become possible. One approach to thinking about the topic is to view the host–microbiome ecosystem as a “holobiont”. Because natural selection acts on an organism’s realized phenotype, and the phenotype of a holobiont is the result of the integrated activities of both the host and all of its microbiome inhabitants, it is reasonable to think that evolution can act at the level of the holobiont and cause changes in the “hologenome”, or the collective genomic content of all the individual bionts within the holobiont. This relatively simple assertion has nevertheless been controversial within the microbiome community. Here, I provide a review of recent work on the hologenome concept of evolution. I attempt to provide a clear definition of the concept and its implications and to clarify common points of disagreement.
more »
« less
- Award ID(s):
- 1851085
- PAR ID:
- 10148988
- Date Published:
- Journal Name:
- F1000Research
- Volume:
- 7
- ISSN:
- 2046-1402
- Page Range / eLocation ID:
- 1664
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Holobiont phenotype results from a combination of host and symbiont genotypes as well as from prevailing environmental conditions that alter the relationships among symbiotic members. Corals exemplify this concept, where shifts in the algal symbiont community can lead to some corals becoming more or less thermally tolerant. Despite linkage between coral bleaching and disease, the roles of symbiotic bacteria in holobiont resistance and susceptibility to disease remains less well understood. This study thus characterizes the microbiome of disease‐resistant and ‐susceptibleAcropora cervicorniscoral genotypes (hereafter referred to simply as ‘genotypes’) before and after high temperature‐mediated bleaching. We found that the intracellular bacterial parasite ‘Ca.Aquarickettsia rohweri’ was strikingly abundant in disease‐susceptible genotypes. Disease‐resistant genotypes, however, had notably more diverse and even communities, with correspondingly low abundances of ‘Ca.Aquarickettsia’.Bleaching caused a dramatic reduction of ‘Ca.Aquarickettsia’ within disease‐susceptible corals and led to an increase in bacterial community dispersion, as well as the proliferation of opportunists. Our data support the hypothesis that ‘Ca.Aquarickettsia’ species increase coral disease risk through two mechanisms: (i) the creation of host nutritional deficiencies leading to a compromised host‐symbiont state and (ii) the opening of niche space for potential pathogens during thermal stress.more » « less
-
Summary Breeders and evolutionary geneticists have grappled with the complexity of the ‘genotype‐to‐phenotype map’ for decades. Now, recent studies highlight the relevance of this concept for understanding heritability of plant microbiomes. Because host phenotype is a more proximate cause of microbiome variation than host genotype, microbiome heritability varies across plant anatomy and development. Fine‐scale variation of plant traits within organs suggests that the well‐established concept of ‘microbiome compartment’ should be refined. Additionally, recent work shows that the balance of deterministic processes (including host genetic effects) vs stochastic processes also varies over time and space. Together, these findings suggest that re‐centering plant phenotype – both as a predictor and a readout of microbiome function – will accelerate new insights into microbiome heritability.more » « less
-
Abstract Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont—the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome—that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian–Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.more » « less
-
Kormas, Konstantinos Aristomenis (Ed.)ABSTRACT The study of the mammalian microbiome serves as a critical tool for understanding host-microbial diversity and coevolution and the impact of bacterial communities on host health. While studies of specific microbial systems (e.g., in the human gut) have rapidly increased, large knowledge gaps remain, hindering our understanding of the determinants and levels of variation in microbiomes across multiple body sites and host species. Here, we compare microbiome community compositions from eight distinct body sites among 17 phylogenetically diverse species of nonhuman primates (NHPs), representing the largest comparative study of microbial diversity across primate host species and body sites. Analysis of 898 samples predominantly acquired in the wild demonstrated that oral microbiomes were unique in their clustering, with distinctive divergence from all other body site microbiomes. In contrast, all other body site microbiomes clustered principally by host species and differentiated by body site within host species. These results highlight two key findings: (i) the oral microbiome is unique compared to all other body site microbiomes and conserved among diverse nonhuman primates, despite their considerable dietary and phylogenetic differences, and (ii) assessments of the determinants of host-microbial diversity are relative to the level of the comparison (i.e., intra-/inter-body site, -host species, and -individual), emphasizing the need for broader comparative microbial analyses across diverse hosts to further elucidate host-microbial dynamics, evolutionary and biological patterns of variation, and implications for human-microbial coevolution. IMPORTANCE The microbiome is critical to host health and disease, but much remains unknown about the determinants, levels, and evolution of host-microbial diversity. The relationship between hosts and their associated microbes is complex. Most studies to date have focused on the gut microbiome; however, large gaps remain in our understanding of host-microbial diversity, coevolution, and levels of variation in microbiomes across multiple body sites and host species. To better understand the patterns of variation and evolutionary context of host-microbial communities, we conducted one of the largest comparative studies to date, which indicated that the oral microbiome was distinct from the microbiomes of all other body sites and convergent across host species, suggesting conserved niche specialization within the Primates order. We also show the importance of host species differences in shaping the microbiome within specific body sites. This large, comparative study contributes valuable information on key patterns of variation among hosts and body sites, with implications for understanding host-microbial dynamics and human-microbial coevolution.more » « less
An official website of the United States government

