Magnesium (Mg2+) is an essential nutrient in all organisms. However, high levels of Mg2+ in the environment are toxic to plants. In this study, we identified the vacuolar-type H+-pyrophosphatase, AVP1, as a critical enzyme for optimal plant growth under high-Mg conditions. The Arabidopsis avp1 mutants displayed severe growth retardation, as compared to the wild-type plants upon excessive Mg2+. Unexpectedly, the avp1 mutant plants retained similar Mg content to wild-type plants under either normal or high Mg conditions, suggesting that AVP1 may not directly contribute to Mg2+ homeostasis in plant cells. Further analyses confirmed that the avp1 mutant plants contained a higher pyrophosphate (PPi) content than wild type, coupled with impaired vacuolar H+-pyrophosphatase activity. Interestingly, expression of the Saccharomyces cerevisiae cytosolic inorganic pyrophosphatase1 gene IPP1, which facilitates PPi hydrolysis but not proton translocation into vacuole, rescued the growth defects of avp1 mutants under high-Mg conditions. These results provide evidence that high-Mg sensitivity in avp1 mutants possibly resulted from elevated level of cytosolic PPi. Moreover, genetic analysis indicated that mutation of AVP1 was additive to the defects in mgt6 and cbl2 cbl3 mutants that are previously known to be impaired in Mg2+ homeostasis. Taken together, our results suggest AVP1 is required for cellular PPi homeostasis that in turn contributes to high-Mg tolerance in plant cells.
more »
« less
Highly Expandable Foam for Lithographic 3-D Printing
Polymerase chain reaction (PCR) is a powerful method for nucleic acid amplification. However, the PCR is inhibited in its yield due to its byproduct, pyrophosphate (PPi), a byproduct of the reaction; the yield is thereby limited. The conventional method for hydrolysis of PPi by pyrophosphatase (PPase) is not well adapted for operation at elevated temperatures over long times as required during the PCR. In this work, we reported a strategy to improve the PCR yield using a conjugate of the enzyme with the thermally responsive polymer poly(N-isopropylacrylamide) (PNIPAM). Pyrophosphatase (PPase) was conjugated to PNIPAM site-specifically near the active center. As compared to the free enzyme, the optimum temperature of the conjugate was shown to increase from 45 to 60 °C. For the conjugate, about 77% enzyme activity was retained after incubation at 60 °C for 3 h, representing a 6.8-fold increase as compared to the unconjugated enzyme. For the PCR using the conjugate, the yield was 1.5-fold greater than using the unconjugated enzyme. As well as improving the yield of the PCR (and possibly other biological reactions) at elevated temperature, polymer conjugation may also provide a strategy to improve the heat resistance of proteins more generally.
more »
« less
- Award ID(s):
- 1844463
- PAR ID:
- 10149138
- Date Published:
- Journal Name:
- ACS applied materials interfaces
- Volume:
- 12
- Issue:
- 16
- ISSN:
- 1944-8244
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inorganic pyrophosphatase (PPase) is an enzyme that catalyzes the hydrolysis of the phosphoanhydride bond in pyrophosphate (PPi) to release inorganic phosphate (Pi) and simultaneously exchange oxygen isotopes between Pi and water. Here, we quantified the exchange kinetics of oxygen isotopes between five Pi isotopologues (P18O4, P18O316O, P18O216O2, P18O16O3, and P16O4) and water using Raman spectroscopy and 31P nuclear magnetic resonance (NMR) during the PPase-catalyzed 18O–16O isotope exchange reaction in Pi-water and PPi-water systems. At a high PPi concentration (300 mM), hydrolysis of PPi by PPase was predominant, and only a small fraction of PPi (≪1%) took part in the reversible hydrolysis–condensation reaction (PPi ↔ Pi), leading to the oxygen isotope exchange between Pi and water. We demonstrated that Raman and NMR methods can be equally applied for monitoring the kinetics of the oxygen exchange between the Pi isotopologue and water. It was found that the isotope exchange determined by the spectroscopic methods was detectable as low as 0.2% 18O abundance, but the reliability below 1% was much lower. Given that high P concentrations (≥1 mM) are required in these methods, environmental application of these methods is limited to rare high P conditions in engineered and agricultural environments.more » « less
-
Lignocellulosic biomass recalcitrance to enzymatic degradation necessitates high enzyme loadings, incurring large processing costs for the production of industrial-scale biofuels or biochemicals. Manipulating surface charge interactions to minimize nonproductive interactions between cellulolytic enzymes and plant cell wall components (e.g., lignin or cellulose) via protein supercharging has been hypothesized to improve biomass biodegradability but with limited demonstrated success to date. Here, we characterize the effect of introducing non-natural enzyme surface mutations and net charge on cellulosic biomass hydrolysis activity by designing a library of supercharged family-5 endoglucanase Cel5A and its native family-2a carbohydrate binding module (CBM) originally belonging to an industrially relevant thermophilic microbe, Thermobifida fusca. A combinatorial library of 33 mutant constructs containing different CBM and Cel5A designs spanning a net charge range of −52 to 37 was computationally designed using Rosetta macromolecular modeling software. Activity for all mutants was rapidly characterized as soluble cell lysates, and promising mutants (containing mutations on the CBM, Cel5A catalytic domain, or both CBM and Cel5A domains) were then purified and systematically characterized. Surprisingly, often endocellulases with mutations on the CBM domain alone resulted in improved activity on cellulosic biomass, with three top-performing supercharged CBM mutants exhibiting between 2- and 5-fold increase in activity, compared to native enzyme, on both pretreated biomass enriched in lignin (i.e., corn stover) and isolated crystalline/amorphous cellulose. Furthermore, we were able to clearly demonstrate that endocellulase net charge can be selectively fine-tuned using a protein supercharging protocol for targeting distinct substrates and maximizing biocatalytic activity. Additionally, several supercharged CBM-containing endocellulases exhibited a 5–10 °C increase in optimal hydrolysis temperature, compared to native enzyme, which enabled further increase in hydrolytic yield at higher operational reaction temperatures. This study demonstrates the first successful implementation of enzyme supercharging of cellulolytic enzymes to increase hydrolytic activity toward complex lignocellulosic biomass-derived substrates.more » « less
-
null (Ed.)The temperature dependence of the mechanical properties of polyvinyl alcohol-based poly n-isopropyl acrylamide (PVA-PNIPAm) hydrogel was studied from the static and dynamic bulk modulus of the material. The effect of the temperature-induced volumetric phase transition on Young’s Modulus, Poisson’s ratio, and the density of PVA-PNIPAm was experimentally measured and compared with a non-thermo-responsive Alginate hydrogel as a reference. An increase in the temperature from 27.5 to 32 °C results in the conventional temperature-dependent de-swelling of the PVA-PNIPAm hydrogel volume of up to 70% at the lower critical solution temperature (LCST). However, with the increase in temperature, the PVA-PNIPAm hydrogel showed a drastic increase in Young’s Modulus and density of PVA-PNIPAm and a corresponding decrease in the Poisson’s ratio and the static bulk modulus around the LCST temperature. The dynamic bulk modulus of the PVA-PNIPAm hydrogel is highly frequency-dependent before the LCST and highly temperature-sensitive after the LCST. The dynamic elastic properties of the thermo-responsive PVA-PNIPAm hydrogel were compared and observed to be significantly different from the thermally insensitive Alginate hydrogel.more » « less
-
Lignin is the second-most abundant biopolymer in nature and remains a severely underutilized waste product of agriculture and paper production. Sulfur is the most underutilized byproduct of petroleum and natural gas processing industries. On their own, both sulfur and lignin exhibit very poor mechanical properties. In the current work, a strategy for preparing more durable composites of sulfur and lignin, LSx , is described. Composites LSx were prepared by reaction of allyl lignin with elemental sulfur, whereby some of the sulfur forms polysulfide crosslinks with lignin to yield a three-dimensional network. Even relatively small quantities (<5 wt%) of the polysulfide-crosslinked lignin network provides up to a 3.4-fold increase in mechanical reinforcement over sulfur alone, as measured by the storage moduli and flexural strength determined from dynamic mechanical analysis (temperature dependence and stress–strain analysis). Notably, LSx composites could be repeatedly remelted and recast after pulverization without loss of mechanical strength. These initial studies suggest potential practical applications of lignin and sulfur waste streams in the ongoing quest towards more sustainable, recyclable structural materials.more » « less
An official website of the United States government

