skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Background-free imaging of chemical bonds by a simple and robust frequency-modulated stimulated Raman scattering microscopy
Being able to image chemical bonds with high sensitivity and speed, stimulated Raman scattering (SRS) microscopy has made a major impact in biomedical optics. However, it is well known that the standard SRS microscopy suffers from various backgrounds, limiting the achievable contrast, quantification and sensitivity. While many frequency-modulation (FM) SRS schemes have been demonstrated to retrieve the sharp vibrational contrast, they often require customized laser systems and/or complicated laser pulse shaping or introduce additional noise, thereby hindering wide adoption. Herein we report a simple but robust strategy for FM-SRS microscopy based on a popular commercial laser system and regular optics. Harnessing self-phase modulation induced self-balanced spectral splitting of picosecond Stokes beam propagating in standard single-mode silica fibers, a high-performance FM-SRS system is constructed without introducing any additional signal noise. Our strategy enables adaptive spectral resolution for background-free SRS imaging of Raman modes with different linewidths. The generality of our method is demonstrated on a variety of Raman modes with effective suppressing of backgrounds including non-resonant cross phase modulation and electronic background from two-photon absorption or pump-probe process. As such, our method is promising to be adopted by the SRS microscopy community for background-free chemical imaging.  more » « less
Award ID(s):
1904684
PAR ID:
10149198
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
28
Issue:
10
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 15663
Size(s):
Article No. 15663
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High‐sensitivity chemical imaging offers a window to decipher the molecular orchestra inside a living system. Based on vibrational fingerprint signatures, coherent Raman scattering microscopy provides a label‐free approach to map biomolecules and drug molecules inside a cell. Yet, by near‐infrared (NIR) pulse excitation, the sensitivity is limited to millimolar concentration for endogenous biomolecules. Here, the imaging sensitivity of stimulated Raman scattering (SRS) is significantly boosted for retinoid molecules to 34 micromolar via electronic preresonance in the visible wavelength regime. Retinoids play critical roles in development, immunity, stem cell differentiation, and lipid metabolism. By visible preresonance SRS (VP‐SRS) imaging, retinoid distribution in single embryonic neurons and mouse brain tissues is mapped, retinoid storage in chemoresistant pancreatic and ovarian cancers is revealed, and retinoids stored in protein network and lipid droplets ofCaenorahbditis elegansare identified. These results demonstrate VP‐SRS microscopy as an ultrasensitive label‐free chemical imaging tool and collectively open new opportunities of understanding the function of retinoids in biological systems. 
    more » « less
  2. Particles in biopharmaceutical products present high risks due to their detrimental impacts on product quality and safety. Identification and quantification of particles in drug products are important to understand particle formation mechanisms, which can help develop control strategies for particle formation during the formulation development and manufacturing process. However, existing analytical techniques such as microflow imaging and light obscuration measurement lack the sensitivity and resolution to detect particles with sizes smaller than 2 μm. More importantly, these techniques are not able to provide chemical information to determine particle composition. In this work, we overcome these challenges by applying the stimulated Raman scattering (SRS) microscopy technique to monitor the C−H Raman stretching modes of the proteinaceous particles and silicone oil droplets formed in the prefilled syringe barrel. By comparing the relative signal intensity and spectral features of each component, most particles can be classified as protein−silicone oil aggregates. We further show that morphological features are poor indicators of particle composition. Our method has the capability to quantify aggregation in protein therapeutics with chemical and spatial information in a label-free manner, potentially allowing high throughput screening or investigation of aggregation mechanisms. 
    more » « less
  3. We studied the use of vibrationally resonant, third-order sum-frequency generation (TSFG) for imaging of biological samples. We found that laser-scanning TSFG provides vibrationally sensitive imaging capabilities of lipid droplets and structures in sectioned tissue samples. Although the contrast is based on the infrared-activity of molecular modes, TSFG images exhibit a high lateral resolution of 0.5µm or better. We observed that the imaging properties of TSFG resemble the imaging properties of coherent anti-Stokes Raman scattering (CARS) microscopy, offering a nonlinear infrared alternative to coherent Raman methods. TSFG microscopy holds promise as a high-resolution imaging technique in the fingerprint region where coherent Raman techniques often provide insufficient sensitivity. 
    more » « less
  4. Abstract Nonlinear optical imaging modalities, such as stimulated Raman scattering (SRS) microscopy, use pulsed-laser excitation with high peak intensity that can perturb the native state of cells. In this study, we used bulk RNA sequencing, quantitative measurement of cell proliferation, and fluorescent measurement of the generation of reactive oxygen species to assess phototoxic effects of near-IR pulsed laser radiation, at different time scales, for laser excitation settings relevant to SRS imaging. We define a range of laser excitation settings for which there was no significant change in mouse Neuro2A cells after laser exposure. This study provides guidance for imaging parameters that minimize photo-induced perturbations in SRS microscopy to ensure accurate interpretation of experiments with time-lapse imaging or with paired measurements of imaging and sequencing on the same cells. 
    more » « less
  5. Abstract Stem cell‐based therapies carry significant promise for treating human diseases. However, clinical translation of stem cell transplants for effective treatment requires precise non‐destructive evaluation of the purity of stem cells with high sensitivity (<0.001% of the number of cells). Here, a novel methodology using hyperspectral imaging (HSI) combined with spectral angle mapping‐based machine learning analysis is reported to distinguish differentiating human adipose‐derived stem cells (hASCs) from control stem cells. The spectral signature of adipogenesis generated by the HSI method enables identifying differentiated cells at single‐cell resolution. The label‐free HSI method is compared with the standard techniques such as Oil Red O staining, fluorescence microscopy, and qPCR that are routinely used to evaluate adipogenic differentiation of hASCs. HSI is successfully used to assess the abundance of adipocytes derived from transplanted cells in a transgenic mice model. Further, Raman microscopy and multiphoton‐based metabolic imaging is performed to provide complementary information for the functional imaging of the hASCs. Finally, the HSI method is validated using matrix‐assisted laser desorption/ionization‐mass spectrometry imaging of the stem cells. The study presented here demonstrates that multimodal imaging methods enable label‐free identification of stem cell differentiation with high spatial and chemical resolution. 
    more » « less