Abstract One of the characteristic features of the next-generation of Industry 4.0 is human-centricity, which in turn includes two technological advancements: Artificial Intelligence and the Industrial Metaverse. In this work, we assess the impact that AI played on the advancement of three technologies that emerged to be cornerstones in the fourth generation of industry: intelligent industrial robotics, unmanned aerial vehicles, and additive manufacturing. Despite the significant improvement that AI and the industrial metaverse can offer, the incorporation of many AI-enabled and Metaverse-based technologies remains under the expectations. Safety continues to be a strong factor that limits the expansion of intelligent industrial robotics and drones, whilst Cybersecurity is effectively a major limiting factor for the advance of the industrial metaverse and the integration of blockchains. However, most research works agree that the lack of the skilled workforce will no-arguably be the decisive factor that limits the incorporation of these technologies in industry. Therefore, long-term planning and training programs are needed to counter the upcoming shortage in the skilled workforce.
more »
« less
Advances in Industrial Robotics: From Industry 3.0 Automation to Industry 4.0 Collaboration
In this paper we present recent advances, current and future market trends in industrial robotics. Artificial Intelligence has evolved as the main feature to characterize Industry 4.0, Next-generation robotics utilize this feature to perform tasks collaboratively, as opposed to the currently deployed industrial robots, which were designed mainly for automation, isolated in cages, and highly-controlled environments. Current data show that China takes the lead in the industrial robotics market with 48% of the top-ten market in 2019. The electronics sector took the lead in robot-deployment in East Asia, and is continuously increasing in deploying industrial robotics in other parts of the world. Studies on the challenges associated with this technology, show that the main concern is the lack of trained labor to handle the technologies in next generation industrial robotics.
more »
« less
- Award ID(s):
- 1801120
- PAR ID:
- 10149216
- Date Published:
- Journal Name:
- 2019 4th Technology Innovation Management and Engineering Science International Conference (TIMES-iCON)
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work we evaluate the state of the semiconductor manufacturing industry and its challenges and trends. Future trends in the industry are analyzed from three perspectives: the evolution of Industry 4.0, the advances in semiconductor materials, and the impact of the Covid-19 Pandemic. The semiconductor manufacturing industry witnessed an acute decline in the United States and other regions in the two decades prior to the CoVid-19 pandemic. The decline was only uncovered after the chip shortage of 2021 that resulted from the severe supply chain disruption. Trends in the industry were analyzed from three perspectives: Industry 4.0, advances in materials, and the Post-pandemic era. As a result of the evolution of the fourth generation of industry (Industry 4.0), trends in semiconductor manufacturing include robotization, which caused the industry to become the largest market for industrial robotics since 2020, and an all-time peak globalization. The semiconductor industry is a very globalized industry with corporates from different parts of the world taking part in the production of the final product. Although some materials such as carbon and Gallium Nitride show promising trends to replace silicon as the material of choice. It will likely not be before two or three decades when a semiconductor material will be able to replace silicon. Challenges for the industry include the shortage of the trained-workforce, and the added inter-country restrictions that may hinder the globalization of the industry.more » « less
-
Manufacturing has adopted technologies such as automation, robotics, industrial Internet of Things (IoT), and big data analytics to improve productivity, efficiency, and capabilities in the production environment. Modern manufacturing workers not only need to be adept at the traditional manufacturing technologies but also ought to be trained in the advanced data-rich computer-automated technologies. This study analyzes the data science and analytics (DSA) skills gap in today’s manufacturing workforce to identify the critical technical skills and domain knowledge required for data science and intelligent manufacturing-related jobs that are highly in-demand in today’s manufacturing industry. The gap analysis conducted in this paper on Emsi job posting and profile data provides insights into the trends in manufacturing jobs that leverage data science, automation, cyber, and sensor technologies. These insights will be helpful for educators and industry to train the next generation manufacturing workforce. The main contribution of this paper includes (1) presenting the overall trend in manufacturing job postings in the U.S., (2) summarizing the critical skills and domain knowledge in demand in the manufacturing sector, (3) summarizing skills and domain knowledge reported by manufacturing job seekers, (4) identifying the gaps between demand and supply of skills and domain knowledge, and (5) recognize opportunities for training and upskilling workforce to address the widening skills and knowledge gap.more » « less
-
Over the years, the ability of production plants to operate in a faster and more efficient manner has consistently grown and expanded as technology has further developed. This growth is a result of the constantly steady advances of industrial robotics. In 2016, for the first time, the electronics industry exceeded the automotive industry in demand for industrial robotics in the Asian markets of China, Japan, and Korea. Worldwide, the electronics sector’s share of the robotics market rose steadily to 32% in 2017, almost equal to the automotive sector (33%) [1]. This change indicates that sectors that have not been historical markets for industrial robotics, are now adapting to this robotics revolution. Improvements in Industrial robotics for Energy Efficiency [2]: 1) Improvements in Hardware Selection: such as an improved selection of the robotic systems, new mechanical components that reduce energy use, being able to be more compact, and finding different usages of a robot’s movement. 2) Improvements in Software 3) Improvements in both hardware and Software.more » « less
-
Abstract Prosumers adopt distributed energy resources (DER) to cover part of their own consumption and to sell surplus energy. Although individual prosumers are too dispersed to exert operational market power, they may collectively hold a strategic advantage over conventional generation in selecting DER capacity via aggregators. We devise a bilevel model to examine DER capacity sizing by a collective prosumer as a Stackelberg leader in an electricity industry where conventional generation may exert market power in operations. At the upper level, the prosumer chooses DER capacity in anticipation of lower-level operations by conventional generation and DER output. We demonstrate that exertion of market power in operations by conventional generation and the marginal cost of conventional generation affect DER investment by the prosumer in a nonmonotonic manner. Intuitively, in an industry where conventional generation exerts market power in operations similar to a monopoly (MO), the prosumer invests in more DER capacity than under perfectly competitive operations (PC) to take advantage of a high market-clearing price. However, if the marginal cost of conventional generation is high enough, then this intuitive result is reversed as the prosumer adopts more DER capacity under PC than under MO. This is because the high marginal cost of conventional generation prevents the market-clearing price from decreasing, thereby allowing for higher prosumer revenues. Moreover, competition relieves the chokehold on consumption under MO, which further incentivises the prosumer to expand DER capacity to capture market share. We prove the existence of a critical threshold for the marginal cost of conventional generation that leads to this counterintuitive result. Finally, we propose a countervailing regulatory mechanism that yields welfare-enhancing DER investment even in deregulated electricity industries.more » « less
An official website of the United States government

