Abstract. Nutrient budgets help to identify the excess or insufficient use of fertilizers and other nutrient sources in agriculture. They allow for the calculation of indicators, such as the nutrient balance (surplus if positive or deficit if negative) and nutrient use efficiency, that help to monitor agricultural productivity and sustainability across the world. We present a global database of country-level budget estimates for nitrogen (N), phosphorus (P) and potassium (K) on cropland. The database, disseminated in FAOSTAT, is meant to provide a global reference, synthesizing and continuously updating the state of the art on this topic. The database covers 205 countries and territories, as well as regional and global aggregates, for the period from 1961 to 2020. Results highlight the wide range in nutrient use and nutrient use efficiencies across geographic regions, nutrients, and time. The average N balance on global cropland has remained fairly steady at about 50–55 kg ha−1 yr−1 during the past 15 years, despite increasing N inputs. Regional trends, however, show recent average N surpluses that range from a low of about 10 kg N ha−1 yr−1 in Africa to more than 90 kg N ha−1 yr−1 in Asia. Encouragingly, average global cropland N use efficiency decreased from about 59 % in 1961 to a low of 43 % in 1988, but it has risen since then to a level of 55 %. Phosphorus deficits are mainly found in Africa, whereas potassium deficits occur in Africa and the Americas. This study introduces improvements over previous work in relation to the key nutrient coefficients affecting nutrient budgets and nutrient use efficiency estimates, especially with respect to nutrient removal in crop products, manure nutrient content, atmospheric deposition and crop biological N fixation rates. We conclude by discussing future research directions and highlighting the need to align statistical definitions across research groups as well as to further refine plant and livestock coefficients and expand estimates to all agricultural land, including nutrient flows in meadows and pastures. Further information is available from https://doi.org/10.5061/dryad.hx3ffbgkh (Ludemann et al., 2023b) as well as the FAOSTAT database (https://www.fao.org/faostat/en/#data/ESB; FAO, 2022a) and is updated annually.
more »
« less
Nutrient retention via sedimentation in a created urban stormwater treatment wetland.
Nutrient removal by a 4.6-ha urban stormwater treatment wetland system in a 20-ha water/nature park in southwest Florida has been investigated for several years, suggesting that the wetlands are significant sinks of both phosphorus and nitrogen although with a slightly decreased total phosphorus retention in recent years. This study investigates the role of sedimentation on changes in nutrient concentrations and fluxes through these wetlands. Sedimentation bottles along with sediment nutrient analyses every six months allowed us to estimate gross sedimentation rates of 9.9±0.1 cm yr−1 and nutrient sedimentation rates of approximately 7.8 g-P m−2 yr−1 and 81.7 g-Nm−2 yr−1. Using a horizon marker method to account for lack of resuspension in the sedimentation bottles suggested that net nutrient retention by sedimentation may be closer to 1.5 g-Pm−2 yr−1 and 33.2 g-N m−2 yr−1. Annual nutrient retention of the wetland system determined from water quality measurements at the inflow and outflow averaged 4.23 g-P m−2 yr−1 and 11.91 g-N m–2 yr−1, suggesting that sedimentationis a significant pathway for nutrient retention in these urban wetlands and that resuspension is playing a significant role in reintroducing nutrients, especially phosphorus, to the water column. These results also suggest that additional sources of nitrogen not in our current nutrient budgets may be affecting overall nutrient retention.
more »
« less
- Award ID(s):
- 1939920
- PAR ID:
- 10149404
- Date Published:
- Journal Name:
- Science of the total environment
- Volume:
- 727
- Issue:
- 138337
- ISSN:
- 1879-1026
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Global chronic nitrogen (N) deposition to forests can alleviate ecosystem N limitation, with potentially wide ranging consequences for biodiversity, carbon sequestration, soil and surface water quality, and greenhouse gas emissions. However, the ability to predict these consequences requires improved quantification of hard-to-measure N fluxes, particularly N gas loss and soil N retention. Here we combine a unique set of long-term catchment N budgets in the central Europe with ecosystem 15 N data to reveal fundamental controls over dissolved and gaseous N fluxes in temperate forests. Stream leaching losses of dissolved N corresponded with nutrient stoichiometry of the forest floor, with stream N losses increasing as ecosystems progress towards phosphorus limitation, while soil N storage increased with oxalate extractable iron and aluminium content. Our estimates of soil gaseous losses based on 15 N stocks averaged 2.5 ± 2.2 kg N ha −1 yr −1 and comprised 20% ± 14% of total N deposition. Gaseous N losses increased with forest floor N:P ratio and with dissolved N losses. Our relationship between gaseous and dissolved N losses was also able to explain previous 15 N-based N loss rates measured in tropical and subtropical catchments, suggesting a generalisable response driven by nitrate (NO 3 − ) abundance and in which the relative importance of dissolved N over gaseous N losses tended to increase with increasing NO 3 − export. Applying this relationship globally, we extrapolated current gaseous N loss flux from forests to be 8.9 Tg N yr −1 , which represent 39% of current N deposition to forests worldwide.more » « less
-
Abstract Wetlands have been used to treat anthropogenic effluents for decades due to their intense biogeochemical processes that transform and uptake nutrients, organic matter, and toxins. Despite these known functions, we lack generalizable knowledge of effluent-derived dissolved organic matter (DOM) cycling in wetlands. Here, we quantify the cycling of DOM in one of Canada’s more economically important wetland complexes (Frank Lake, Alberta), restored to hydrologic permanence in the 1980s using urban and agro-industrial effluents. Optical analyses and PARAFAC (parallel factor analysis) modelling showed a clear compositional change from more bioavailable and protein-like DOM at effluent input sites to more aromatic and humic-like at the wetland outflow, likely due to DOM processing and inputs from marsh plants and wetland soils. Microbial incubations showed that effluent DOM was rapidly consumed, with the half-life of DOM increasing from as low as 35 days for effluent, to 462 days at the outflow, as a function of compositional shifts toward aromatic, humic-like material. Long-term averaged dissolved organic carbon (DOC) export was low compared to many wetlands (10.3 ± 2.0 g C m−2 yr−1). Consistent with predictions based on water residence time, our mass balance showed Frank Lake was a net source of DOM across all measured years, but shifted from a source to sink among wet and drought years that respectively shortened or lengthened the water residence and DOM processing times. Overall, Frank Lake processes and transforms effluent DOM, despite being a longer-term net source of DOM to downstream environments.more » « less
-
Net ecosystem carbon balance is a comprehensive assessment of ecosystem function that can test restoration effectiveness. Coastal peatlands are globally important carbon sinks that are vulnerable to carbon loss with saltwater intrusion. It is uncertain how wetland carbon stocks and fluxes change during freshwater restoration following exposure to saltwater and elevated nutrients. We restored freshwater to sawgrass (Cladium jamaicense) peat monoliths from freshwater marshes of the Everglades (Florida, U.S.A.) that had previously been exposed to elevated salinity (approximately9 ppt) and phosphorus (P) loading (1 g P m−2year−1) in wetland mesocosms. We quantified changes in water and soil physicochemistry, plant and soil carbon and nutrient standing stocks, and net ecosystem productivity during restoration. Added freshwater immediately reduced porewater salinity from >8 to approximately 2 ppt, but elevated porewater dissolved organic carbon persisted. Above‐ and belowground biomass, leaf P concentrations, and instantaneous rates of gross ecosystem productivity (GEP) and ecosystem respiration (ER) remained elevated from prior added P. Modeled monthly GEP and ER were higher in marshes with saltwater and P legacies, resulting in negative net ecosystem productivities that were up to 12× lower than controls. Leaf litter breakdown rates and litter P concentrations were 2× higher in marshes with legacies of added saltwater and P. Legacies of saltwater and P on carbon loss persisted despite freshwater restoration, but recovery was greatest for freshwater marshes exposed to saltwater alone. Our results suggest that restoration in nutrient‐limited freshwater wetlands exposed to saltwater intrusion and nutrient enrichment is a slow process.more » « less
-
Understanding the relative contributions of aboveground and belowground processes to soil accretion and carbon density may explain carbon sequestration rates in mangroves across different coastal environmental settings. We reformulated the nutrient mangrove model (NUMAN) by improving algorithms and uncertainty analysis using literature values and site-specific observations to evaluate the relative contributions of organic and inorganic sedimentation for three mangrove sites with marked soil fertility gradients reflected by nitrogen-to-phosphorus (N:P) ratios including Shark River (N:P = 28), Rookery Bay (N:P = 54–78), and Taylor Slough (N:P = 102) in south Florida. NUMAN 2.0 considers cellulose as a refractory organic-matter sub-pool and simultaneously incorporates coarse-root inputs to soil formation. The model simulation also captures root necromass accumulation. Monte Carlo (MC) simulations (N = 1000 per site) were conducted to capture uncertainty by treating five key parameters as random variables: lignin content in fine, coarse, and large roots; inorganic sediment loading; and root biomass at the surface. With robust mass balancing of organic matter, NUMAN 2.0 generates precise predictions of surface accretion and carbon density. NUMAN 2.0 simulations estimated mean (standard deviation) soil carbon sequestration rates at 130.1 (55.4) for Shark River, 72.5 (3.7) for Rookery Bay, and 130.0 (83.9) g m-2 yr-1 for Taylor Slough, compared to field values of 123.0, 86.0, and 108.8 (8.7) g m-2 yr-1 , respectively. Simulation experiments with NUMAN 2.0 suggest that belowground organic matter dominates soil formation and carbon sequestration generally in coastal environmental settings with little allochthonous input such as carbonate settings, while wood litterfall should dominate soil organic matter in top 10 cm in estuaries, and bays.more » « less
An official website of the United States government

