skip to main content


Title: Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering
We study high-dimensional sparse estimation tasks in a robust setting where a constant fraction of the dataset is adversarially corrupted. Specifically, we focus on the fundamental problems of robust sparse mean estimation and robust sparse PCA. We give the first practically viable robust estimators for these problems. In more detail, our algorithms are sample and computationally efficient and achieve near-optimal robustness guarantees. In contrast to prior provable algorithms which relied on the ellipsoid method, our algorithms use spectral techniques to iteratively remove outliers from the dataset. Our experimental evaluation on synthetic data shows that our algorithms are scalable and significantly outperform a range of previous approaches, nearly matching the best error rate without corruptions.  more » « less
Award ID(s):
1751040
NSF-PAR ID:
10149454
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We explore the connection between outlier-robust high-dimensional statistics and non-convex optimization in the presence of sparsity constraints, with a focus on the fundamental tasks of robust sparse mean estimation and robust sparse PCA. We develop novel and simple optimization formulations for these problems such that any approximate stationary point of the associated optimization problem yields a near-optimal solution for the underlying robust estimation task. As a corollary, we obtain that any first-order method that efficiently converges to stationarity yields an efficient algorithm for these tasks.1 The obtained algorithms are simple, practical, and succeed under broader distributional assumptions compared to prior work. 
    more » « less
  2. We explore the connection between outlier-robust high-dimensional statistics and non-convex optimization in the presence of sparsity constraints, with a focus on the fundamental tasks of robust sparse mean estimation and robust sparse PCA. We develop novel and simple optimization formulations for these problems such that any approximate stationary point of the associated optimization problem yields a near-optimal solution for the underlying robust estimation task. As a corollary, we obtain that any first-order method that efficiently converges to stationarity yields an efficient algorithm for these tasks. The obtained algorithms are simple, practical, and succeed under broader distributional assumptions compared to prior work. 
    more » « less
  3. We explore the connection between outlier-robust high-dimensional statistics and non-convex optimization in the presence of sparsity constraints, with a focus on the fundamental tasks of robust sparse mean estimation and robust sparse PCA. We develop novel and simple optimization formulations for these problems such that any approximate stationary point of the associated optimization problem yields a near-optimal solution for the underlying robust estimation task. As a corollary, we obtain that any first-order method that efficiently converges to stationarity yields an efficient algorithm for these tasks. The obtained algorithms are simple, practical, and succeed under broader distributional assumptions compared to prior work. 
    more » « less
  4. null (Ed.)
    Abstract One of the classical approaches for estimating the frequencies and damping factors in a spectrally sparse signal is the MUltiple SIgnal Classification (MUSIC) algorithm, which exploits the low-rank structure of an autocorrelation matrix. Low-rank matrices have also received considerable attention recently in the context of optimization algorithms with partial observations, and nuclear norm minimization (NNM) has been widely used as a popular heuristic of rank minimization for low-rank matrix recovery problems. On the other hand, it has been shown that NNM can be viewed as a special case of atomic norm minimization (ANM), which has achieved great success in solving line spectrum estimation problems. However, as far as we know, the general ANM (not NNM) considered in many existing works can only handle frequency estimation in undamped sinusoids. In this work, we aim to fill this gap and deal with damped spectrally sparse signal recovery problems. In particular, inspired by the dual analysis used in ANM, we offer a novel optimization-based perspective on the classical MUSIC algorithm and propose an algorithm for spectral estimation that involves searching for the peaks of the dual polynomial corresponding to a certain NNM problem, and we show that this algorithm is in fact equivalent to MUSIC itself. Building on this connection, we also extend the classical MUSIC algorithm to the missing data case. We provide exact recovery guarantees for our proposed algorithms and quantify how the sample complexity depends on the true spectral parameters. In particular, we provide a parameter-specific recovery bound for low-rank matrix recovery of jointly sparse signals rather than use certain incoherence properties as in existing literature. Simulation results also indicate that the proposed algorithms significantly outperform some relevant existing methods (e.g., ANM) in frequency estimation of damped exponentials. 
    more » « less
  5. Principal Components Analysis (PCA) is a dimension-reduction technique widely used in machine learning and statistics. However, due to the dependence of the principal components on all the dimensions, the components are notoriously hard to interpret. Therefore, a variant known as sparse PCA is often preferred. Sparse PCA learns principal components of the data but enforces that such components must be sparse. This has applications in diverse fields such as computational biology and image processing. To learn sparse principal components, it’s well known that standard PCA will not work, especially in high dimensions, and therefore algorithms for sparse PCA are often studied as a separate endeavor. Various algorithms have been proposed for Sparse PCA over the years, but given how fundamental it is for applications in science, the limits of efficient algorithms are only partially understood. In this work, we study the limits of the powerful Sum of Squares (SoS) family of algorithms for Sparse PCA. SoS algorithms have recently revolutionized robust statistics, leading to breakthrough algorithms for long-standing open problems in machine learning, such as optimally learning mixtures of gaussians, robust clustering, robust regression, etc. Moreover, it is believed to be the optimal robust algorithm for many statistical problems. Therefore, for sparse PCA, it’s plausible that it can beat simpler algorithms such as diagonal thresholding that have been traditionally used. In this work, we show that this is not the case, by exhibiting strong tradeoffs between the number of samples required, the sparsity and the ambient dimension, for which SoS algorithms, even if allowed sub-exponential time, will fail to optimally recover the component. Our results are complemented by known algorithms in literature, thereby painting an almost complete picture of the behavior of efficient algorithms for sparse PCA. Since SoS algorithms encapsulate many algorithmic techniques such as spectral or statistical query algorithms, this solidifies the message that known algorithms are optimal for sparse PCA. Moreover, our techniques are strong enough to obtain similar tradeoffs for Tensor PCA, another important higher order variant of PCA with applications in topic modeling, video processing, etc. 
    more » « less