skip to main content


Title: Strong Macroscale Supercrystalline Structures by 3D Printing Combined with Self‐Assembly of Ceramic Functionalized Nanoparticles
  more » « less
NSF-PAR ID:
10149476
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
22
Issue:
7
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Colloidal assembly is an attractive means to control material properties via hierarchy of particle composition, size, ordering, and macroscopic form. However, despite well‐established methods for assembling colloidal crystals as films and patterns on substrates, and within microscale confinements such as droplets or microwells, it has not been possible to build freeform colloidal crystal structures. Direct‐write colloidal assembly, a process combining the bottom‐up principle of colloidal self‐assembly with the versatility of direct‐write 3D printing, is introduced in the present study. By this method, centimeter‐scale, free‐standing colloidal structures are built from a variety of materials. A scaling law that governs the rate of assembly is derived; macroscale structural color is tailored via the size and crystalline ordering of polystyrene particles, and several freestanding structures are built from silica and gold particles. Owing to the diversity of colloidal building blocks and the means to control their interactions, direct‐write colloidal assembly could therefore enable novel composites, photonics, electronics, and other materials and devices.

     
    more » « less
  2. Abstract

    Aramid nanofibers (ANFs) are a strong and heat‐resistant nanomaterial that can be isolated from commercial para‐aramid fibers, which allow a bottom‐up self‐assembly to form ordered macroscale structures like ANF films. However, the anisotropic nature of high aspect ratio ANFs is not fully exploited when fabricating ANF films for the optimal mechanical properties. In this research, direct ink writing (DIW) is applied to produce ANF‐assembled films with arbitrary shapes, and the shear‐induced alignment of ANFs can follow the printing path direction. Therefore, controlled alignment of ANFs following the computer‐programmed printing pattern is achieved by DIW, which provides a path for the application of topology and nanofiber alignment optimization in nanofiber‐assembled films. In addition, the resulting DIW ANF films exhibit outstanding Young's modulus of 8.39 GPa, tensile strength of 198 MPa, and tensile toughness of 19.4 MJ m−3in the alignment direction, together with a wide working temperature range up to 440 °C without losing 50% of its room temperature storage modulus. Moreover, the demonstrated self‐joining ability, rollability, and lamination processability of the DIW ANF films expand their potential applications toward high‐temperature ultrathin tubes, substrates for flexible printed circuit boards, and three‐dimensional all‐ANF lightweight structural parts in extreme environments.

     
    more » « less
  3. Abstract

    Binary nanoparticle (NP) superlattices exhibit distinct collective plasmonic, magnetic, optical, and electronic properties. Here, we computationally demonstrate how fluid-fluid interfaces could be used to self-assemble binary systems of NPs into 2D superlattices when the NP species exhibit different miscibility with the fluids forming the interface. We develop a basin-hopping Monte Carlo (BHMC) algorithm tailored for interface-trapped structures to rapidly determine the ground-state configuration of NPs, allowing us to explore the repertoire of binary NP architectures formed at the interface. By varying the NP size ratio, interparticle interaction strength, and difference in NP miscibility with the two fluids, we demonstrate the assembly of an array of exquisite 2D periodic architectures, including AB-, AB2-, and AB3-type monolayer superlattices as well as AB-, AB2-, A3B5-, and A4B6-type bilayer superlattices. Our results suggest that the interfacial assembly approach could be a versatile platform for fabricating 2D colloidal superlattices with tunable structure and properties.

     
    more » « less
  4.  
    more » « less
  5. Abstract

    Manufacturing of low‐density‐high‐strength carbon foams can benefit the construction, transportation, and packaging industries. One successful route to lightweight and mechanically strong carbon foams involves pyrolysis of polymeric architectures, which is inevitably accompanied by drastic volumetric shrinkage (usually >98%). As such, a challenge of these materials lies in maintaining bulk dimensions of building struts that span orders of magnitude difference in length scale from centimeters to nanometers. This work demonstrates fabrication of macroscale low‐density‐high‐strength carbon foams that feature exceptional dimensional stability through pyrolysis of robust template‐coating pairs. The template serves as the architectural blueprint and contains strength‐imparting properties (e.g., high node density and small strut dimensions); it is composed of a low char‐yielding porous polystyrene backbone with a high carbonization‐onset temperature. The coating serves to imprint and transcribe the template architecture into pyrolytic carbon; it is composed of a high char‐yielding conjugated polymer with a relatively low carbonization‐onset temperature. The designed carbonization mismatch enables structural inheritance, while the decomposition mismatch affords hollow struts, minimizing density. The carbons synthesized through this new framework exhibit remarkable dimensional stability (≈80% dimension retention; ≈50% volume retention) and some of the highest specific strengths (≈0.13 GPa g−1cm3) among reported carbon foams derived from porous polymer templates.

     
    more » « less