Models produced by machine learning, particularly deep neural networks, are state-of-the-art for many machine learning tasks and demonstrate very high prediction accuracy. Unfortunately, these models are also very brittle and vulnerable to specially crafted adversarial examples. Recent results have shown that accuracy of these models can be reduced from close to hundred percent to below 5\% using adversarial examples. This brittleness of deep neural networks makes it challenging to deploy these learning models in security-critical areas where adversarial activity is expected, and cannot be ignored. A number of methods have been recently proposed to craft more effective and generalizable attacks on neural networks along with competing efforts to improve robustness of these learning models. But the current approaches to make machine learning techniques more resilient fall short of their goal. Further, the succession of new adversarial attacks against proposed methods to increase neural network robustness raises doubts about a foolproof approach to robustify machine learning models against all possible adversarial attacks. In this paper, we consider the problem of detecting adversarial examples. This would help identify when the learning models cannot be trusted without attempting to repair the models or make them robust to adversarial attacks. This goal of finding limitations of the learning model presents a more tractable approach to protecting against adversarial attacks. Our approach is based on identifying a low dimensional manifold in which the training samples lie, and then using the distance of a new observation from this manifold to identify whether this data point is adversarial or not. Our empirical study demonstrates that adversarial examples not only lie farther away from the data manifold, but this distance from manifold of the adversarial examples increases with the attack confidence. Thus, adversarial examples that are likely to result into incorrect prediction by the machine learning model is also easier to detect by our approach. This is a first step towards formulating a novel approach based on computational geometry that can identify the limiting boundaries of a machine learning model, and detect adversarial attacks.
more »
« less
DETOX: A Redundancy-based Framework for Faster and More Robust Gradient Aggregation
To improve the resilience of distributed training to worst-case, or Byzantine node failures, several recent approaches have replaced gradient averaging with robust aggregation methods. Such techniques can have high computational costs, often quadratic in the number of compute nodes, and only have limited robustness guarantees. Other methods have instead used redundancy to guarantee robustness, but can only tolerate limited number of Byzantine failures. In this work, we present DETOX, a Byzantine-resilient distributed training framework that combines algorithmic redundancy with robust aggregation. DETOX operates in two steps, a filtering step that uses limited redundancy to significantly reduce the effect of Byzantine nodes, and a hierarchical aggregation step that can be used in tandem with any state-of-the-art robust aggregation method. We show theoretically that this leads to a substantial increase in robustness, and has a per iteration runtime that can be nearly linear in the number of compute nodes. We provide extensive experiments over real distributed setups across a variety of large-scale machine learning tasks, showing that DETOX leads to orders of magnitude accuracy and speedup improvements over many state-of-the-art Byzantine-resilient approaches.
more »
« less
- Award ID(s):
- 1844951
- NSF-PAR ID:
- 10149502
- Date Published:
- Journal Name:
- International Conference on Machine Learning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Federated learning (FL) is known to be susceptible to model poisoning attacks in which malicious clients hamper the accuracy of the global model by sending manipulated model updates to the central server during the FL training process. Existing defenses mainly focus on Byzantine-robust FL aggregations, and largely ignore the impact of the underlying deep neural network (DNN) that is used to FL training. Inspired by recent findings on critical learning periods (CLP) in DNNs, where small gradient errors have irrecoverable impact on the final model accuracy, we propose a new defense, called a CLP-aware defense against poisoning of FL (DeFL). The key idea of DeFL is to measure fine-grained differences between DNN model updates via an easy-to-compute federated gradient norm vector (FGNV) metric. Using FGNV, DeFL simultaneously detects malicious clients and identifies CLP, which in turn is leveraged to guide the adaptive removal of detected malicious clients from aggregation. As a result, DeFL not only mitigates model poisoning attacks on the global model but also is robust to detection errors. Our extensive experiments on three benchmark datasets demonstrate that DeFL produces significant performance gain over conventional defenses against state-of-the-art model poisoning attacks.more » « less
-
The increasing uncertainty of distributed energy resources promotes the risks of transient events for power systems. To capture event dynamics, Phasor Measurement Unit (PMU) data is widely utilized due to its high resolutions. Notably, Machine Learning (ML) methods can process PMU data with feature learning techniques to identify events. However, existing ML-based methods face the following challenges due to salient characteristics from both the measurement and the label sides: (1) PMU streams have a large size with redundancy and correlations across temporal, spatial, and measurement type dimensions. Nevertheless, existing work cannot effectively uncover the structural correlations to remove redundancy and learn useful features. (2) The number of event labels is limited, but most models focus on learning with labeled data, suffering risks of non-robustness to different system conditions. To overcome the above issues, we propose an approach called Kernelized Tensor Decomposition and Classification with Semi-supervision (KTDC-Se). Firstly, we show that the key is to tensorize data storage, information filtering via decomposition, and discriminative feature learning via classification. This leads to an efficient exploration of structural correlations via high-dimensional tensors. Secondly, the proposed KTDC-Se can incorporate rich unlabeled data to seek decomposed tensors invariant to varying operational conditions. Thirdly, we make KTDC-Se a joint model of decomposition and classification so that there are no biased selections of the two steps. Finally, to boost the model accuracy, we add kernels for non-linear feature learning. We demonstrate the KTDC-Se superiority over the state-of-the-art methods for event identification using PMU data.more » « less
-
Learning representations of sets of nodes in a graph is crucial for applications ranging from node-role discovery to link prediction and molecule classification. Graph Neural Networks (GNNs) have achieved great success in graph representation learning. However, expressive power of GNNs is limited by the 1-Weisfeiler-Lehman (WL) test and thus GNNs generate identical representations for graph substructures that may in fact be very different. More powerful GNNs, proposed recently by mimicking higher-order-WL tests, only focus on representing entire graphs and they are computationally inefficient as they cannot utilize sparsity of the underlying graph. Here we propose and mathematically analyze a general class of structure related features, termed Distance Encoding (DE). DE assists GNNs in representing any set of nodes, while providing strictly more expressive power than the 1-WL test. DE captures the distance between the node set whose representation is to be learned and each node in the graph. To capture the distance DE can apply various graph-distance measures such as shortest path distance or generalized PageRank scores. We propose two ways for GNNs to use DEs (1) as extra node features, and (2) as controllers of message aggregation in GNNs. Both approaches can utilize the sparse structure of the underlying graph, which leads to computational efficiency and scalability. We also prove that DE can distinguish node sets embedded in almost all regular graphs where traditional GNNs always fail. We evaluate DE on three tasks over six real networks: structural role prediction, link prediction, and triangle prediction. Results show that our models outperform GNNs without DE by up-to 15% in accuracy and AUROC. Furthermore, our models also significantly outperform other state-of-the-art methods especially designed for the above tasks.more » « less
-
Using a toolbox of Internet cartography methods, and new ways of applying them, we have undertaken a comprehensive active measurement-driven study of the topology of U.S. regional access ISPs. We used state-of-the-art approaches in various combinations to accommodate the geographic scope, scale, and architectural richness of U.S. regional access ISPs. In addition to vantage points from research platforms, we used public WiFi hotspots and public transit of mobile devices to acquire the visibility needed to thoroughly map access networks across regions. We observed many different approaches to aggregation and redundancy, across links, nodes, buildings, and at different levels of the hierarchy. One result is substantial disparity in latency from some Edge COs to their backbone COs, with implications for end users of cloud services. Our methods and results can inform future analysis of critical infrastructure, including resilience to disasters, persistence of the digital divide, and challenges for the future of 5G and edge computing.more » « less