skip to main content


Title: Semiconductor aspects of the oxyfuel cutting torch preheat flame; Part II: The flame's internal electrical structure
This two-part paper presents precise measurements of the ion currents passing between the torch and work piece of the preheat flame of an oxyfuel cutting torch as a means for replacing contemporary sensing suites. Part II presents the results of a novel spinning disc Langmuir probe technique to construct spatially resolved measurements of the flame's ion density distribution. A bias voltage is applied to a .254mm diameter wire protruding from a spinning disc, and as the wire is passed through the flame, the measured currents (on the order 10uA) are collected. The process is repeated with incremental wire depths in the flame to construct the entire planar cross-sectional ion density. Measurements reveal intense ion concentrations in the inner cones that rapidly decay by an order of magnitude in the surrounding flow. The outer cone forms a hollow cylinder of weak ion concentration that declines with distance from the inner cones in a manner consistent with recombination.  more » « less
Award ID(s):
1900698
NSF-PAR ID:
10149601
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ASME Manufacturing Engineering and Science Conference
Volume:
15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work presents a novel technique for constructing spatially resolved ion densities from Transient Insertion Langmuir Probe (TIL Probe) measurements in a flame. Similar to a tomographic transformation, this technique is used to deduce the spatial distribution of ions in a flame from many individual measurements that are integrated along a probe’s length. We demonstrate the approach in the oxyfuel cutting torch preheat flame, which presents two severe challenges for electrical measurements: (1) temperatures over 3,000K destroy most probes made from alloys with appropriate chemical stability, and (2) the relevant length scales are on the order 0.15 mm. Presented here are (1) a Fourier series formulation for the current density, (2) a least-square problem for calculating the coefficients, (3) criteria for the highest wavenumber allowed in the expansion, (4) description of an experiment used to measure probe currents in an oxyfuel cutting torch preheat flame, (5) solution for spatially resolved current density in the oxyfuel cutting torch flame. Images of ion current density are produced with a resolution of 0.15 mm (0.0059 in), exhibiting peak current densities around 14 𝜇A/mm. It is found that low-signal regions in the “shadow” of high-signal regions can suffer from signal-to-noise ratio problems due to natural fluctuations in the flame, and improvements are proposed to mitigate the effect. It is found that the numerical cost of setting up the resulting Hermitian-matrix linear problem far exceeds the numerical cost of inversion. High-level packages like Python and MATLAB are far too slow, so a multi-threaded algorithm is implemented in C, and the LAPACKE C library is used for efficient linear algebra support. 
    more » « less
  2. This work presents a novel technique for constructing spatially resolved ion densities from Transient Insertion Langmuir Probe (TIL Probe) measurements in a flame. Similar to a tomographic transformation, this technique is used to deduce the spatial distribution of ions in a flame from many individual measurements that are integrated along a probe's length. We demonstrate the approach in the oxyfuel cutting torch preheat flame, which presents two severe challenges for electrical measurements: (1) temperatures over 3,000K destroy most probes made from alloys with appropriate chemical stability, and (2) the relevant length scales are on the order 0.15 mm. Presented here are (1) a Fourier series formulation for the current density, (2) a least-square problem for calculating the coefficients, (3) criteria for the highest wavenumber allowed in the expansion, (4) description of an experiment used to measure probe currents in an oxyfuel cutting torch preheat flame, (5) solution for spatially resolved current density in the oxyfuel cutting torch flame. Images of ion current density are produced with a resolution of 0.15 mm (0.0059 in), exhibiting peak current densities around 14 $\mu$A/mm. It is found that low-signal regions in the ``shadow'' of high-signal regions can suffer from signal-to-noise ratio problems due to natural fluctuations in the flame, and improvements are proposed to mitigate the effect. It is found that the numerical cost of setting up the resulting Hermitian-matrix linear problem far exceeds the numerical cost of inversion. High-level packages like Python and MATLAB are far too slow, so a multi-threaded algorithm is implemented in C, and the LAPACKE C library is used for efficient linear algebra support. 
    more » « less
  3. This work presents a novel technique for constructing spatially resolved ion densities from Transient Insertion Langmuir Probe (TIL Probe) measurements in a flame. Similar to a tomographic transformation, this technique is used to deduce the spatial distribution of ions in a flame from many individual measurements that are integrated along a probe's length. We demonstrate the approach in the oxyfuel cutting torch preheat flame, which presents two severe challenges for electrical measurements: (1) temperatures over 3,000K destroy most probes made from alloys with appropriate chemical stability, and (2) the relevant length scales are on the order 0.15 mm. Presented here are (1) a Fourier series formulation for the current density, (2) a least-square problem for calculating the coefficients, (3) criteria for the highest wavenumber allowed in the expansion, (4) description of an experiment used to measure probe currents in an oxyfuel cutting torch preheat flame, (5) solution for spatially resolved current density in the oxyfuel cutting torch flame. Images of ion current density are produced with a resolution of 0.15 mm (0.0059 in), exhibiting peak current densities around 14 $\mu$A/mm. It is found that low-signal regions in the ``shadow'' of high-signal regions can suffer from signal-to-noise ratio problems due to natural fluctuations in the flame, and improvements are proposed to mitigate the effect. It is found that the numerical cost of setting up the resulting Hermitian-matrix linear problem far exceeds the numerical cost of inversion. High-level packages like Python and MATLAB are far too slow, so a multi-threaded algorithm is implemented in C, and the LAPACKE C library is used for efficient linear algebra support. 
    more » « less
  4. This two-part paper presents precise measurements of the ion currents passing between the torch and work piece of the preheat flame of an oxyfuel cutting torch as a means for replacing contemporary sensing suites. Part I shows that the current-voltage characteristic of the flame exhibits sharp discontinuities common to semi-conductors that we study in various configurations including preheat, pierce, cut, and loss-of-cut. Standoff measurements are made by applying a sinusoidal current signal between the torch and work piece while the resulting voltage amplitude is an indication of flame resistance. Uncertainties are estimated to range from 0.5mm to 1mm (.02in to .04in). Signals for ready-to-pierce and precursors for loss-of-cut are also produced due to the generation of secondary ions from chemical activity at the work piece. 
    more » « less
  5. Abstract

    This paper presents a computational model to study ion and electron transportation and current-voltage characteristics inside a methane-oxygen flame. A commercial software is used to develop the model by splitting the simulation into the combustion and electrochemical transportation parts. A laboratory experiment is used to compare the results from the model. The initial and boundary conditions represented in the model are similar to the experimental conditions in the laboratory experiment.

    In the combustion part, the general GRI3.0 mechanism plus three additional ionization reactions are applied and results are then used as input into the electrochemical transportation part. A particular inspection line is created to analyze the results of the electrochemical transportation part. Ion, electron number density, and current density are studied along the interval from −40V to 40V electric potential. The ions are heavier and more difficult to move than electrons. The results show that at both torch and work surfaces charged sheaths are formed and cause three different regions of current-voltage relations.

     
    more » « less