Abstract Eastern boundary upwelling systems (EBUSs) are among the most productive regions in the ocean because deep, nutrient‐rich waters are brought up to the surface. Previous studies have identified winds, mesoscale eddies and offshore nutrient distributions as key influences on the net primary production in EBUSs. However uncertainties remain regarding their roles in setting cross‐shore primary productivity and ecosystem diversity. Here, we use a quasi‐two‐dimensional (2D) model that combines ocean circulation with a spectrum of planktonic sizes to investigate the impact of winds, eddies, and offshore nutrient distributions in shaping EBUS ecosystems. A key finding is that variations in the strength of the wind stress and the nutrient concentration in the upwelled waters control the distribution and characteristics of the planktonic ecosystem. Specifically, a strengthening of the wind stress maximum, driving upwelling, increases the average planktonic size in the coastal upwelling zone, whereas the planktonic ecosystem is relatively insensitive to variations in the wind stress curl. Likewise, a deepening nutricline shifts the location of phytoplankton blooms shore‐ward, shoals the deep chlorophyll maximum offshore, and supports larger phytoplankton across the entire domain. Additionally, increased eddy stirring of nutrients suppresses coastal primary productivity via “eddy quenching,” whereas increased eddy restratification has relatively little impact on the coastal nutrient supply. These findings identify the wind stress maximum, isopycnal eddy diffusion, and nutricline depth as particularly influential on the coastal ecosystem, suggesting that variations in these quantities could help explain the observed differences between EBUSs, and influence the responses of EBUS ecosystems to climate shifts.
more »
« less
The ecological and biogeochemical state of the North Pacific Subtropical Gyre is linked to sea surface height
Sea surface height (SSH) is routinely measured from satellites and used to infer ocean currents, including eddies, that affect the distribution of organisms and substances in the ocean. SSH not only reflects the dynamics of the surface layer, but also is sensitive to the fluctuations of the main pycnocline; thus it is linked to events of nutrient upwelling. Beyond episodic upwelling events, it is not clear if and how SSH is linked to broader changes in the biogeochemical state of marine ecosystems. Our analysis of 23 years of satellite observations and biogeochemical measurements from the North Pacific Subtropical Gyre shows that SSH is associated with numerous biogeochemical changes in distinct layers of the water column. From the sea surface to the depth of the chlorophyll maximum, dissolved phosphorus and nitrogen enigmatically increase with SSH, enhancing the abundance of heterotrophic picoplankton. At the deep chlorophyll maximum, increases in SSH are associated with decreases in vertical gradients of inorganic nutrients, decreases in the abundance of eukaryotic phytoplankton, and increases in the abundance of prokaryotic phytoplankton. In waters below ∼100 m depth, increases in SSH are associated with increases in organic matter and decreases in inorganic nutrients, consistent with predicted consequences of the vertical displacement of isopycnal layers. Our analysis highlights how satellite measurements of SSH can be used to infer the ecological and biogeochemical state of open-ocean ecosystems.
more »
« less
- Award ID(s):
- 1756517
- PAR ID:
- 10149644
- Date Published:
- Journal Name:
- Journal of Marine Research
- Volume:
- 77
- Issue:
- 2
- ISSN:
- 0022-2402
- Page Range / eLocation ID:
- 215 to 245
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Coastal upwelling, driven by alongshore winds and characterized by cold sea surface temperatures and high upper-ocean nutrient content, is an important physical process sustaining some of the oceans’ most productive ecosystems. To fully understand the ocean properties in eastern boundary upwelling systems, it is important to consider the depth of the source waters being upwelled, as it affects both the SST and the transport of nutrients toward the surface. Here, we construct an upwelling source depth distribution for parcels at the surface in the upwelling zone. We do so using passive tracers forced at the domain boundary for every model depth level to quantify their contributions to the upwelled waters. We test the dependence of this distribution on the strength of the wind stress and stratification using high-resolution regional ocean simulations of an idealized coastal upwelling system. We also present an efficient method for estimating the mean upwelling source depth. Furthermore, we show that the standard deviation of the upwelling source depth distribution increases with increasing wind stress and decreases with increasing stratification. These results can be applied to better understand and predict how coastal upwelling sites and their surface properties have and will change in past and future climates.more » « less
-
Abstract The Southern Ocean is a region of intense air–sea exchange that plays a critical role for ocean circulation, global carbon cycling, and climate. Subsurface chlorophyll‐a maxima, annually recurrent features throughout the Southern Ocean, may increase the energy flux to higher trophic levels and facilitate downward carbon export. It is important that model parameterizations appropriately represent the chlorophyll vertical structure in the Southern Ocean. Using BGC‐Argo chlorophyll profiles and the Biogeochemical Southern Ocean State Estimate (B‐SOSE), we investigate the sensitivity of chlorophyll vertical structure to model parameters. Based on the sensitivity analysis results, we estimate optimized parameters, which efficiently improve the model consistency with observations. We characterize chlorophyll vertical structure in terms of Empirical Orthogonal Functions and define metrics to compare model results and observations in a series of parameter perturbation experiments. We show that chlorophyll magnitudes are likely to respond quasi‐symmetrically to perturbations in the analyzed parameters, while depth and thickness of the subsurface chlorophyll maximum show an asymmetric response. Perturbing the phytoplankton growth tends to generate more symmetric responses than perturbations in the grazing rate. We identify parameters that affect chlorophyll magnitude, subsurface chlorophyll or both and discuss insights into the processes that determine chlorophyll vertical structure in B‐SOSE. We highlight turbulence, differences in phytoplankton traits, and grazing parameterizations as key areas for improvement in models of the Southern Ocean.more » « less
-
Abstract Phytoplankton growth in estuaries is regulated by a complex combination of physical factors with freshwater discharge usually playing a dominating role controlling nutrient and light availability. The role of other factors, including upwelling-generating winds, is still unclear because most estuaries are too small for upwelling to emerge. In this study, we used remotely sensed proxies of phytoplankton biomass and concentration of suspended mineral particles to compare the effect of river discharge with the effect of upwelling events associated with persistent along-channel southerly winds in the Chesapeake Bay, a large estuary where upwelling and its effects on biogeochemical dynamics have been previously reported. The surface chlorophyll-a concentrations (Chl-a) were estimated from Visible Infrared Imaging Radiometer Suite (VIIRS) satellite data using the Generalized Stacked-Constraints Model (GSCM) corrected for seasonal effects by comparing remotely sensed and field-measured data. Light limitation of phytoplankton growth was assessed from the concentration of suspended mineral particles estimated from the remotely sensed backscattering at blue (443 nm) wavelength bbp(443). The nine-year time series (2012–2020) of Chl-a and bbp(443) confirmed that a primary factor regulating phytoplankton growth in this nearshore eutrophic area is discharge from the Susquehanna River, and presumably the nutrients it delivers, with a time lag up to four months. Persistent southerly wind events (2–3 days with wind speed >4 m/s) affected the water column stratification in the central part of the bay but did not result in significant increases in remotely sensed Chl-a. Analysis of model simulations of selected upwelling-favorable wind events revealed that strong southerly winds resulted in well-defined lateral (East–West) responses but were insufficient to deliver high-nutrient water to the surface layer to support phytoplankton bloom. We conclude that, in the Chesapeake Bay, which is a large, eutrophic estuary, wind-driven upwelling of deep water plays a limited role in driving phytoplankton growth under most conditions compared with river discharge. Integr Environ Assess Manag 2022;18:921–938. © 2022 SETAC KEY POINTS River discharge is a primary factor regulating phytoplankton growth in the Chesapeake Bay. Upwelling-generating wind events were insufficient to support phytoplankton blooms. Generalized Stacked-Constraints Model (GSCM) is a useful method for processing ocean color satellite imagery in the nearshore areas.more » « less
-
In nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4–16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes.more » « less
An official website of the United States government

