The structure of animal social networks influences survival and reproductive success, as well as pathogen and information transmission. However, the general mechanisms determining social structure remain unclear. Using data from 73,767 social interactions among wild spotted hyenas collected over 27 years, we show that the process of social inheritance determines how offspring relationships are formed and maintained. Relationships between offspring and other hyenas bear resemblance to those of their mothers for as long as 6 years, and the degree of similarity increases with maternal social rank. Mother-offspring relationship strength affects social inheritance and is positively correlated with offspring longevity. These results support the hypothesis that social inheritance of relationships can structure animal social networks and be subject to adaptive tradeoffs.
- Award ID(s):
- 1755089
- PAR ID:
- 10149799
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 287
- Issue:
- 1922
- ISSN:
- 0962-8452
- Page Range / eLocation ID:
- 20192969
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
How social development in early-life affects fitness remains poorly understood. 2. Though there is growing evidence that early-life relationships can affect fitness, little research has investigated how social positions develop or whether there are particularly important periods for social position development in an animal's life history. In long-lived species in particular, understanding the lasting consequences of early-life social environments requires detailed, long-term datasets. 3. Here we used a 25-year dataset to test whether social positions held during early development predicted adult fitness. Specifically, we quantified social position using three social network metrics: degree, strength and betweenness. We determined the social position of each individual in three types of networks during each of three stages of ontogeny to test whether they predict annual reproductive success (ARS) or longevity among adult female spotted hyenas Crocuta crocuta. 4. The social positions occupied by juvenile hyenas did predict their fitness, but the effects of social position on fitness measures differed between stages of early development. Network metrics when individuals were young adults better predicted ARS, but network metrics for younger animals, particularly when youngsters were confined to the communal den, better predicted longevity than did metrics assessed during other stages of development. 5. Our study shows how multiple types of social bonds formed during multiple stages of social development predict lifetime fitness outcomes. We suggest that social bonds formed during specific phases of development may be more important than others when considering fitness outcomes.more » « less
-
Social hierarchies are widespread in human and animal societies, and an individual’s position in its hierarchy affects both its access to resources and its fitness. Hierarchies are traditionally thought of in terms of variation in individual ability to win fights, but many are structured around arbitrary conventions like nepotistic inheritance rather than such traits as physical strength or weapon size. These convention-based societies are perplexing because position in the hierarchy appears to be gained irrespective of individual physical ability, yet social status strongly affects access to resources and fitness. It remains unclear why individuals abide by seemingly arbitrary conventions regarding social status when they stand to benefit by ignoring these conventions and competing for top positions or access to resources. Using data from wild spotted hyenas collected over 27 y and five generations, we show that individuals who repeatedly form coalitions with their top allies are likely to improve their position in the hierarchy, suggesting that social alliances facilitate revolutionary social change. Using lifetime reproductive success as a fitness measure, we go on to demonstrate that these status changes can have major fitness consequences. Finally, we show that the consequences of these changes may become even more dramatic over multiple generations, as small differences in social rank become amplified over time. This work represents a first step in reconciling the advantages of high status with the appearance of “arbitrary” conventions that structure inequality in animal and human societies.
-
Abstract How social development in early‐life affects fitness remains poorly understood.
Though there is growing evidence that early‐life relationships can affect fitness, little research has investigated how social positions develop or whether there are particularly important periods for social position development in an animal's life history. In long‐lived species in particular, understanding the lasting consequences of early‐life social environments requires detailed, long‐term datasets.
Here we used a 25‐year dataset to test whether social positions held during early development predicted adult fitness. Specifically, we quantified social position using three social network metrics: degree, strength and betweenness. We determined the social position of each individual in three types of networks during each of three stages of ontogeny to test whether they predict annual reproductive success (ARS) or longevity among adult female spotted hyenas
Crocuta crocuta .The social positions occupied by juvenile hyenas did predict their fitness, but the effects of social position on fitness measures differed between stages of early development. Network metrics when individuals were young adults better predicted ARS, but network metrics for younger animals, particularly when youngsters were confined to the communal den, better predicted longevity than did metrics assessed during other stages of development.
Our study shows how multiple types of social bonds formed during multiple stages of social development predict lifetime fitness outcomes. We suggest that social bonds formed during specific phases of development may be more important than others when considering fitness outcomes.
-
ABSTRACT Host-associated microbial communities, henceforth ‘microbiota’, can affect the physiology and behavior of their hosts. In mammals, host ecological, social and environmental variables are associated with variation in microbial communities. Within individuals in a given mammalian species, the microbiota also partitions by body site. Here, we build on this work and sequence the bacterial 16S rRNA gene to profile the microbiota at six distinct body sites (ear, nasal and oral cavities, prepuce, rectum and anal scent gland) in a population of wild spotted hyenas (Crocuta crocuta), which are highly social, large African carnivores. We inquired whether microbiota at these body sites vary with host sex or social rank among juvenile hyenas, and whether they differ between juvenile females and adult females. We found that the scent gland microbiota differed between juvenile males and juvenile females, whereas the prepuce and rectal microbiota differed between adult females and juvenile females. Social rank, however, was not a significant predictor of microbiota profiles. Additionally, the microbiota varied considerably among the six sampled body sites and exhibited strong specificity among individual hyenas. Thus, our findings suggest that site-specific niche selection is a primary driver of microbiota structure in mammals, but endogenous host factors may also be influential.more » « less