skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mode-specific vibrational predissociation dynamics of (HCl) 2 via the free and bound HCl stretch overtones
Award ID(s):
1566064
PAR ID:
10151463
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
152
Issue:
19
ISSN:
0021-9606
Page Range / eLocation ID:
Article No. 194301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hydrogen chloride (HCl) is a key repository of chlorine in the interstellar medium. Accurate determinations of its abundance are critical to assessing the chlorine elemental abundance and constraining stellar nucleosynthesis models. To aid in modeling recent and future observations of HCl rovibrational spectra, we present cross sections and rate coefficients for collisions between HCl and molecular hydrogen. Transitions between rovibrational states of HCl are considered for temperatures ranging from 10 to 3000 K. Cross sections are computed using a full dimensional quantum close-coupling (CC) method and a reduced dimensionality coupled-states (CS) approach. The CS results, benchmarked against the CC results, are used with a recoupling approach to calculate hyperfine-resolved rate coefficients for rovibrational transitions of HCl induced by H2. The rate coefficients will allow for a better determination of the HCl abundance in the interstellar medium and an improved understanding of interstellar chlorine chemistry. We demonstrate the utility of the new rate coefficients in a nonthermodynamic equilibrium radiative transfer model applied to observations of HCl rovibrational transitions in a circumstellar shell. 
    more » « less