skip to main content


Title: Synergy between the anthocyanin and RDR6/SGS3/DCL4 siRNA pathways expose hidden features of Arabidopsis carbon metabolism
Abstract

Anthocyanin pigments furnish a powerful visual output of the stress and metabolic status ofArabidopsis thalianaplants. Essential for pigment accumulation is TRANSPARENT TESTA19 (TT19), a glutathioneS-transferase proposed to bind and stabilize anthocyanins, participating in their vacuolar sequestration, a function conserved across the flowering plants. Here, we report the identification of genetic suppressors that result in anthocyanin accumulation in the absence of TT19. We show that mutations inRDR6,SGS3, orDCL4suppress the anthocyanin defect oftt19by pushing carbon towards flavonoid biosynthesis. This effect is not unique tott19and extends to at least one other anthocyanin pathway gene mutant. This synergy between mutations in components of the RDR6-SGS3-DCL4 siRNA system and the flavonoid pathway reveals genetic/epigenetic mechanisms regulating metabolic fluxes.

 
more » « less
NSF-PAR ID:
10151515
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Anthocyanins and proanthocyanins (PAs) are two end products of the flavonoid biosynthesis pathway. They are believed to be synthesized in the endoplasmic reticulum and then sequestered into the vacuole. In Arabidopsis thaliana, TRANSPARENT TESTA 19 (TT19) is necessary for both anthocyanin and PA accumulation. Here, we found that MtGSTF7, a homolog of AtTT19, is essential for anthocyanin accumulation but not required for PA accumulation in Medicago truncatula. MtGSTF7 was induced by the anthocyanin regulator LEGUME ANTHOCYANIN PRODUCTION 1 (LAP1), and its tissue expression pattern correlated with anthocyanin deposition in M. truncatula. Tnt1-insertional mutants of MtGSTF7 lost anthocyanin accumulation in vegetative organs, and introducing a genomic fragment of MtGSTF7 could complement the mutant phenotypes. Additionally, the accumulation of anthocyanins induced by LAP1 was significantly reduced in mtgstf7 mutants. Yeast-one-hybridization and dual-luciferase reporter assays revealed that LAP1 could bind to the MtGSTF7 promoter to activate its expression. Ectopic expression of MtGSTF7 in tt19 mutants could rescue their anthocyanin deficiency, but not their PA defect. Furthermore, PA accumulation was not affected in the mtgstf7 mutants. Taken together, our results show that the mechanism of anthocyanin and PA accumulation in M. truncatula is different from that in A. thaliana, and provide a new target gene for engineering anthocyanins in plants.

     
    more » « less
  2. Summary

    The B vitamins provide essential co‐factors for central metabolism in all organisms. In plants, B vitamins have surprising emerging roles in development, stress tolerance and pathogen resistance. Hence, there is a paramount interest in understanding the regulation of vitamin biosynthesis as well as the consequences of vitamin deficiency in crop species. To facilitate genetic analysis of B vitamin biosynthesis and functions in maize, we have mined the UniformMu transposon resource to identify insertional mutations in vitamin pathway genes. A screen of 190 insertion lines for seed and seedling phenotypes identified mutations in biotin, pyridoxine and niacin biosynthetic pathways. Importantly, isolation of independent insertion alleles enabled genetic confirmation of genotype‐to‐phenotype associations. Because B vitamins are essential for survival, null mutations often have embryo lethal phenotypes that prevent elucidation of subtle, but physiologically important, metabolic consequences of sub‐optimal (functional) vitamin status. To circumvent this barrier, we demonstrate a strategy for refined genetic manipulation of vitamin status based on construction of heterozygotes that combine strong and hypomorphic mutant alleles. Dosage analysis ofpdx2alleles in endosperm revealed that endosperm supplies pyridoxine to the developing embryo. Similarly, a hypomorphicbio1allele enabled analysis of transcriptome and metabolome responses to incipient biotin deficiency in seedling leaves. We show that systemic pipecolic acid accumulation is an early metabolic response to sub‐optimal biotin status highlighting an intriguing connection between biotin, lysine metabolism and systemic disease resistance signaling. Seed‐stocks carrying insertions for vitamin pathway genes are available for free, public distribution via the Maize Genetics Cooperation Stock Center.

     
    more » « less
  3. Abstract

    12-hydroxy-jasmonoyl-isoleucine (12OH-JA-Ile) is a metabolite in the catabolic pathway of the plant hormone jasmonate, and is synthesized by the cytochrome P450 subclade 94 enzymes. Contrary to the well-established function of jasmonoyl-isoleucine (JA-Ile) as the endogenous bioactive form of jasmonate, the function of 12OH-JA-Ile is unclear. Here, the potential role of 12OH-JA-Ile in jasmonate signaling and wound response was investigated. Exogenous application of 12OH-JA-Ile mimicked several JA-Ile effects including marker gene expression, anthocyanin accumulation and trichome induction in Arabidopsis thaliana. Genome-wide transcriptomics and untargeted metabolite analyses showed large overlaps between those affected by 12OH-JA-Ile and JA-Ile. 12OH-JA-Ile signaling was blocked by mutation in CORONATINE INSENSITIVE 1. Increased anthocyanin accumulation by 12OH-JA-Ile was additionally observed in tomato and sorghum, and was disrupted by the COI1 defect in tomato jai1 mutant. In silico ligand docking predicted that 12OH-JA-Ile can maintain many of the key interactions with COI1-JAZ1 residues identified earlier by crystal structure studies using JA-Ile as ligand. Genetic alternation of jasmonate metabolic pathways in Arabidopsis to deplete both JA-Ile and 12OH-JA-Ile displayed enhanced jasmonate deficient wound phenotypes and was more susceptible to insect herbivory than that depleted in only JA-Ile. Conversely, mutants overaccumulating 12OH-JA-Ile showed intensified wound responses compared with wild type with similar JA-Ile content. These data are indicative of 12OH-JA-Ile functioning as an active jasmonate signal and contributing to wound and defense response in higher plants.

     
    more » « less
  4. Summary

    In this study, we investigate the genetic mechanisms responsible for the loss of anthocyanins in betalain‐pigmented Caryophyllales, considering our hypothesis of multiple transitions to betalain pigmentation.

    Utilizing transcriptomic and genomic datasets across 357 species and 31 families, we scrutinize 18 flavonoid pathway genes and six regulatory genes spanning four transitions to betalain pigmentation. We examined evidence for hypotheses of wholesale gene loss, modified gene function, altered gene expression, and degeneration of the MBW (MYB‐bHLH‐WD40) trasnscription factor complex, within betalain‐pigmented lineages.

    Our analyses reveal that most flavonoid synthesis genes remain conserved in betalain‐pigmented lineages, with the notable exception ofTT19orthologs, essential for the final step in anthocyanidin synthesis, which appear to have been repeatedly and entirely lost. Additional late‐stage flavonoid pathway genes upstream ofTT19also manifest strikingly reduced expression in betalain‐pigmented species. Additionally, we find repeated loss and alteration in the MBW transcription complex essential for canonical anthocyanin synthesis.

    Consequently, the loss and exclusion of anthocyanins in betalain‐pigmented species appear to be orchestrated through several mechanisms: loss of a key enzyme, downregulation of synthesis genes, and degeneration of regulatory complexes. These changes have occurred iteratively in Caryophyllales, often coinciding with evolutionary transitions to betalain pigmentation.

     
    more » « less
  5. Josephs, Emily (Ed.)
    Abstract

    Adaptive radiations are characterized by rapid ecological diversification and speciation events, leading to fuzzy species boundaries between ecologically differentiated species. Adaptive radiations are therefore key systems for understanding how species are formed and maintained, including the role of de novo mutations versus preexisting variation in ecological adaptation and the genome-wide consequences of hybridization events. For example, adaptive introgression, where beneficial alleles are transferred between lineages through hybridization, may fuel diversification in adaptive radiations and facilitate adaptation to new environments. In this study, we employed whole-genome resequencing data to investigate the evolutionary origin of hummingbird-pollinated flowers and to characterize genome-wide patterns of phylogenetic discordance and introgression in Penstemon subgenus Dasanthera, a small and diverse adaptive radiation of plants. We found that magenta hummingbird-adapted flowers have apparently evolved twice from ancestral blue-violet bee-pollinated flowers within this radiation. These shifts in flower color are accompanied by a variety of inactivating mutations to a key anthocyanin pathway enzyme, suggesting that independent de novo loss-of-function mutations underlie the parallel evolution of this trait. Although patterns of introgression and phylogenetic discordance were heterogenous across the genome, a strong effect of gene density suggests that, in general, natural selection opposes introgression and maintains genetic differentiation in gene-rich genomic regions. Our results highlight the importance of both de novo mutation and introgression as sources of evolutionary change and indicate a role for de novo mutation in driving parallel evolution in adaptive radiations.

     
    more » « less