skip to main content


Title: The influence of crystal thickness and interlayer interactions on the properties of heavy ion irradiated MoS 2
Abstract

Ion irradiation is a versatile tool to introduce controlled defects into two-dimensional (2D) MoS2on account of its unique spatial resolution and plethora of ion types and energies available. In order to fully realise the potential of this technique, a holistic understanding of ion-induced defect production in 2D MoS2crystals of different thicknesses is mandatory. X-ray photoelectron spectroscopy, electron diffraction and Raman spectroscopy show that thinner MoS2crystals are more susceptible to radiation damage caused by 225 keV Xe+ions. However, the rate of defect production in quadrilayer and bulk crystals is not significantly different under our experimental conditions. The rate at which S atoms are sputtered as a function of radiation exposure is considerably higher for monolayer MoS2, compared to bulk crystals, leading to MoO3formation. P-doping of MoS2is observed and attributed to the acceptor states introduced by vacancies and charge transfer interactions with adsorbed species. Moreover, the out-of-plane vibrational properties of irradiated MoS2crystals are shown to be strongly thickness-dependent: in mono- and bilayer MoS2, the confinement of phonons by defects results in a blueshift of theA1gmode. Whereas, a redshift is observed in bulk crystals due to attenuation of the effective restoring forces acting on S atoms caused by vacancies in adjacent MoS2layers. Consequently, theA1gfrequency of tri- and quadrilayer crystals is statistically invariant on account oft competition between phonon confinement effects and interlayer interactions. TheA1glinewidth is observed to decrease in bi- and trilayer crystals after low dose irradiation and is attributed to layer decoupling. This work shows that there is a complex interplay between defect production, crystal thickness and interlayer interactions in MoS2. Our results demonstrate that ion irradiation is an effective tool to modulate the electronic, vibrational and structural properties of MoS2, which may prove beneficial for practical applications.

 
more » « less
NSF-PAR ID:
10151969
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
2D Materials
Volume:
7
Issue:
3
ISSN:
2053-1583
Page Range / eLocation ID:
Article No. 035011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution functionf0(r,p) at cylindrical radiusrfrom the jet axis (assumed to lie along thez-axis) is given by convolving the particle momentum spectrumf0(,p)with the Green’s functionG(r,p;p), which describes the monoenergetic spectrum solution in whichf0δ(pp)asr→ ∞ . Previous work by Webb et al. studied only the Green’s function solution forG(r,p;p). In this paper, we explore for the first time, solutions for more general and realistic forms forf0(,p). The flow velocityu=u(r)ezis along the axis of the jet (thez-axis).uis independent ofz, andu(r) is a monotonic decreasing function ofr. The scattering timeτ(r,p)=τ0(p/p0)αin the shear flow region 0 <r<r2, andτ(r,p)=τ0(p/p0)α(r/r2)s, wheres> 0 in the regionr>r2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r,p) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distributionψp(r,p;p)that particles observed at (r,p) originated fromr→ ∞ with momentump. The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described.

     
    more » « less
  2. Abstract

    We report the discovery and confirmation of the Transiting Exoplanet Survey Satellite (TESS) single-transit, warm and dense sub-Saturn, TIC 139270665 b. This planet is unusually dense for its size: with a bulk density of 2.13 g cm−3(0.645RJ, 0.463MJ), it is the densest warm sub-Saturn of the TESS family. It orbits a metal-rich G2 star. We also found evidence of a second planet, TIC 139270665 c, with a longer period of1010220+780days and minimum massMPsiniof4.890.37+0.66MJ. First clues of TIC 139270665 b’s existence were found by citizen scientists inspecting TESS photometric data from sector 47 in 2022 January. Radial velocity measurements from the Automated Planet Finder combined with TESS photometry and spectral energy distributions viaEXOFASTv2system modeling suggested a23.6240.031+0.030day orbital period for TIC 139270665 b and also showed evidence for the second planet. Based on this estimated period, we mobilized the Unistellar citizen science network for photometric follow-up, capitalizing on their global distribution to capture a second transit of TIC 139270665 b. This citizen science effort also served as a test bed for an education initiative that integrates young students into modern astrophysics data collection. The Unistellar photometry did not definitively detect a second transit, but did enable us to further constrain the planet’s period. As a transiting, warm, and dense sub-Saturn, TIC 139270665 b represents an interesting laboratory for further study to enhance our models of planetary formation and evolution.

     
    more » « less
  3. Abstract

    We perform particle-in-cell simulations to elucidate the microphysics of relativistic weakly magnetized shocks loaded with electron-positron pairs. Various external magnetizationsσ≲ 10−4and pair-loading factorsZ±≲ 10 are studied, whereZ±is the number of loaded electrons and positrons per ion. We find the following: (1) The shock becomes mediated by the ion Larmor gyration in the mean field whenσexceeds a critical valueσLthat decreases withZ±. AtσσLthe shock is mediated by particle scattering in the self-generated microturbulent fields, the strength and scale of which decrease withZ±, leading to lowerσL. (2) The energy fraction carried by the post-shock pairs is robustly in the range between 20% and 50% of the upstream ion energy. The mean energy per post-shock electron scales asE¯eZ±+11. (3) Pair loading suppresses nonthermal ion acceleration at magnetizations as low asσ≈ 5 × 10−6. The ions then become essentially thermal with mean energyE¯i, while electrons form a nonthermal tail, extending fromEZ±+11E¯itoE¯i. Whenσ= 0, particle acceleration is enhanced by the formation of intense magnetic cavities that populate the precursor during the late stages of shock evolution. Here, the maximum energy of the nonthermal ions and electrons keeps growing over the duration of the simulation. Alongside the simulations, we develop theoretical estimates consistent with the numerical results. Our findings have important implications for models of early gamma-ray burst afterglows.

     
    more » « less
  4. Abstract

    Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronicX˜2Σ+(010)state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding theX˜2Σ+(010)state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of174YbOH using high-resolution optical spectroscopy on the nominally forbiddenX˜2Σ+(010)A˜2Π1/2(000)transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of theX˜2Σ+(010)state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on theX˜2Σ+(010)state and fit the molecule-frame dipole moment toDmol=2.16(1)Dand the effective electrong-factor togS=2.07(2). Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excitedA˜2Π1/2(000)state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.

     
    more » « less
  5. Abstract

    While it is well known that cosmic rays (CRs) can gain energy from turbulence via second-order Fermi acceleration, how this energy transfer affects the turbulent cascade remains largely unexplored. Here, we show that damping and steepening of the compressive turbulent power spectrum are expected once the damping timetdampρv2/ĖCRECR1becomes comparable to the turbulent cascade time. Magnetohydrodynamic simulations of stirred compressive turbulence in a gas-CR fluid with diffusive CR transport show clear imprints of CR-induced damping, saturating atĖCRϵ˜, whereϵ˜is the turbulent energy input rate. In that case, almost all of the energy in large-scale motions is absorbed by CRs and does not cascade down to grid scale. Through a Hodge–Helmholtz decomposition, we confirm that purely compressive forcing can generate significant solenoidal motions, and we find preferential CR damping of the compressive component in simulations with diffusion and streaming, rendering small-scale turbulence largely solenoidal, with implications for thermal instability and proposed resonant scattering ofE≳ 300 GeV CRs by fast modes. When CR transport is streaming dominated, CRs also damp large-scale motions, with kinetic energy reduced by up to 1 order of magnitude in realisticECREgscenarios, but turbulence (with a reduced amplitude) still cascades down to small scales with the same power spectrum. Such large-scale damping implies that turbulent velocities obtained from the observed velocity dispersion may significantly underestimate turbulent forcing rates, i.e.,ϵ˜ρv3/L.

     
    more » « less