We perform particle-in-cell simulations to elucidate the microphysics of relativistic weakly magnetized shocks loaded with electron-positron pairs. Various external magnetizations
Ion irradiation is a versatile tool to introduce controlled defects into two-dimensional (2D) MoS2on account of its unique spatial resolution and plethora of ion types and energies available. In order to fully realise the potential of this technique, a holistic understanding of ion-induced defect production in 2D MoS2crystals of different thicknesses is mandatory. X-ray photoelectron spectroscopy, electron diffraction and Raman spectroscopy show that thinner MoS2crystals are more susceptible to radiation damage caused by 225 keV Xe+ions. However, the rate of defect production in quadrilayer and bulk crystals is not significantly different under our experimental conditions. The rate at which S atoms are sputtered as a function of radiation exposure is considerably higher for monolayer MoS2, compared to bulk crystals, leading to MoO3formation. P-doping of MoS2is observed and attributed to the acceptor states introduced by vacancies and charge transfer interactions with adsorbed species. Moreover, the out-of-plane vibrational properties of irradiated MoS2crystals are shown to be strongly thickness-dependent: in mono- and bilayer MoS2, the confinement of phonons by defects results in a blueshift of the
- Publication Date:
- NSF-PAR ID:
- 10151969
- Journal Name:
- 2D Materials
- Volume:
- 7
- Issue:
- 3
- Page Range or eLocation-ID:
- Article No. 035011
- ISSN:
- 2053-1583
- Publisher:
- IOP Publishing
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract σ ≲ 10−4and pair-loading factorsZ ±≲ 10 are studied, whereZ ±is the number of loaded electrons and positrons per ion. We find the following: (1) The shock becomes mediated by the ion Larmor gyration in the mean field whenσ exceeds a critical valueσ Lthat decreases withZ ±. Atσ ≲σ Lthe shock is mediated by particle scattering in the self-generated microturbulent fields, the strength and scale of which decrease withZ ±, leading to lowerσ L. (2) The energy fraction carried by the post-shock pairs is robustly in the range between 20% and 50% of the upstream ion energy. The mean energy per post-shock electron scales as . (3) Pair loading suppresses nonthermal ion acceleration at magnetizations as low asσ ≈ 5 × 10−6. The ions then become essentially thermal with mean energy , while electrons form a nonthermal tail, extending from to . Whenσ = 0, particle acceleration is enhanced by the formation of intense magnetic cavities that populate the precursor during the late stages of shock evolution. Here,more » -
Abstract We investigate the stellar mass–black hole mass (
) relation with type 1 active galactic nuclei (AGNs) down to , corresponding to a ≃ −21 absolute magnitude in rest-frame ultraviolet, atz = 2–2.5. Exploiting the deep and large-area spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs with ranging from 107–1010M ⊙that are measured with single-epoch virial method using Civ emission lines detected in the HETDEX spectra. of the host galaxies are estimated from optical to near-infrared photometric data taken with Spitzer, the Wide-field Infrared Survey Explorer, and ground-based 4–8 m class telescopes byCIGALE spectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by host-nuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the relation covering the unexplored low-mass ranges of , and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic relation atz ∼ 2 has a moderate positive offset ofmore » -
A theoretical analysis on crack formation and propagation was performed based on the coupling between the electrochemical process, classical elasticity, and fracture mechanics. The chemical potential of oxygen, thus oxygen partial pressure, at the oxygen electrode-electrolyte interface (
) was investigated as a function of transport properties, electrolyte thickness and operating conditions (e.g., steam concentration, constant current, and constant voltage). Our analysis shows that: a lower ionic area specific resistance (ASR), and a higher electronic ASR ( ) of the oxygen electrode/electrolyte interface are in favor of suppressing crack formation. The thus local pO2, are sensitive towards the operating parameters under galvanostatic or potentiostatic electrolysis. Constant current density electrolysis provides better robustness, especially at a high current density with a high steam content. While constant voltage electrolysis leads to greater variations of Constant current electrolysis, however, is not suitable for an unstable oxygen electrode because can reach a very high value with a gradually increased A crack may only occur under certain conditions when -
Abstract We present a Keck/MOSFIRE rest-optical composite spectrum of 16 typical gravitationally lensed star-forming dwarf galaxies at 1.7 ≲
z ≲ 2.6 (z mean= 2.30), all chosen independent of emission-line strength. These galaxies have a median stellar mass of and a median star formation rate of . We measure the faint electron-temperature-sensitive [Oiii ]λ 4363 emission line at 2.5σ (4.1σ ) significance when considering a bootstrapped (statistical-only) uncertainty spectrum. This yields a direct-method oxygen abundance of ( ). We investigate the applicability at highz of locally calibrated oxygen-based strong-line metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strong-line ratio. At fixedM *, our composite is well represented by thez ∼ 2.3 direct-method stellar mass—gas-phase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, atmore » -
Abstract We present the direct imaging discovery of a low-mass companion to the nearby accelerating F star, HIP 5319, using SCExAO coupled with the CHARIS, VAMPIRES, and MEC instruments in addition to Keck/NIRC2 imaging. CHARIS
JHK (1.1–2.4μ m) spectroscopic data combined with VAMPIRES 750 nm, MECY , and NIRC2L pphotometry is best matched by an M3–M7 object with an effective temperature ofT = 3200 K and surface gravity log(g ) = 5.5. Using the relative astrometry for HIP 5319 B from CHARIS and NIRC2, and absolute astrometry for the primary from Gaia and Hipparcos, and adopting a log-normal prior assumption for the companion mass, we measure a dynamical mass for HIP 5319 B of , a semimajor axis of au, an inclination of degrees, and an eccentricity of . However, using an alternate prior for our dynamical model yields a much higher mass of . Using data taken with the LCOGT NRES instrument we also show that the primary HIP 5319 A is a single star in contrast to previous characterizations of the system as a spectroscopic binary. This work underscores the importance of assumed priors in dynamical models for companions detected with imaging andmore »