Precise fabrication of semiconducting carbon nanotubes (CNTs) into densely aligned evenly spaced arrays is required for ultrascaled technology nodes. We report the precise scaling of inter-CNT pitch using a supramolecular assembly method called spatially hindered integration of nanotube electronics. Specifically, by using DNA brick crystal-based nanotrenches to align DNA-wrapped CNTs through DNA hybridization, we constructed parallel CNT arrays with a uniform pitch as small as 10.4 nanometers, at an angular deviation <2° and an assembly yield >95%.
more »
« less
Programming the Nucleation of DNA Brick Self‐Assembly with a Seeding Strand
Abstract Recently, the DNA brick strategy has provided a highly modular and scalable approach for the construction of complex structures, which can be used as nanoscale pegboards for the precise organization of molecules and nanoparticles for many applications. Despite the dramatic increase of structural complexity provided by the DNA brick method, the assembly pathways are still poorly understood. Herein, we introduce a “seed” strand to control the crucial nucleation and assembly pathway in DNA brick assembly. Through experimental studies and computer simulations, we successfully demonstrate that the regulation of the assembly pathways through seeded growth can accelerate the assembly kinetics and increase the optimal temperature by circa 4–7 °C for isothermal assembly. By improving our understanding of the assembly pathways, we provide new guidelines for the design of programmable pathways to improve the self‐assembly of DNA nanostructures.
more »
« less
- PAR ID:
- 10152089
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 59
- Issue:
- 22
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 8594-8600
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Pathogenic dsDNA prompts AIM2 assembly leading to the formation of the inflammasome, a multimeric complex that triggers the inflammatory response. The recognition of foreign dsDNA involves AIM2 self-assembly concomitant with dsDNA binding. However, we lack mechanistic and kinetic information on the formation and propagation of the assembly, which can shed light on innate immunity’s time response and specificity. Combining optical traps and confocal fluorescence microscopy, we determine here the association and dissociation rates of the AIM2-DNA complex at the single molecule level. We identify distinct mechanisms for oligomer growth via the binding of incoming AIM2 molecules to adjacent dsDNA or direct interaction with bound AIM2 assemblies, resembling primary and secondary nucleation. Through these mechanisms, the size of AIM2 oligomers can increase fourfold in seconds. Finally, our data indicate that single AIM2 molecules do not diffuse/scan along the DNA, suggesting that oligomerization depends on stochastic encounters with DNA and/or DNA-bound AIM2.more » « less
-
The assembly of synaptic protein-DNA complexes by specialized proteins is critical for bringing together two distant sites within a DNA molecule or bridging two DNA molecules. The assembly of such synaptosomes is needed in numerous genetic processes requiring the interactions of two or more sites. The molecular mechanisms by which the protein brings the sites together, enabling the assembly of synaptosomes, remain unknown. Such proteins can utilize sliding, jumping, and segmental transfer pathways proposed for the single-site search process, but none of these pathways explains how the synaptosome assembles. Here we used restriction enzyme SfiI, that requires the assembly of synaptosome for DNA cleavage, as our experimental system and applied time-lapse, high-speed AFM to directly visualize the site search process accomplished by the SfiI enzyme. For the single-site SfiI-DNA complexes, we were able to directly visualize such pathways as sliding, jumping, and segmental site transfer. However, within the synaptic looped complexes, we visualized the threading and site-bound segment transfer as the synaptosome-specific search pathways for SfiI. In addition, we visualized sliding and jumping pathways for the loop dissociated complexes. Based on our data, we propose the site-search model for synaptic protein-DNA systems.more » « less
-
Nearly thirty years after its inception, the field of DNA-programmed colloidal self-assembly has begun to realize its initial promise. In this review, we summarize recent developments in designing effective interactions and understanding the dynamic self-assembly pathways of DNA-coated nanoparticles and microparticles, as well as how these advances have propelled tremendous progress in crystal engineering. We also highlight exciting new directions showing that new classes of subunits combining nanoparticles with DNA origami can be used to engineer novel multicomponent assemblies, including structures with self-limiting, finite sizes. We conclude by providing an outlook on how recent theoretical advances focusing on the kinetics of self-assembly could usher in new materials-design opportunities, like the possibility of retrieving multiple distinct target structures from a single suspension or accessing new classes of materials that are stabilized by energy dissipation, mimicking self-assembly in living systems.more » « less
-
Abstract Non‐canonical interactions in DNA remain under‐explored in DNA nanotechnology. Recently, many structures with non‐canonical motifs have been discovered, notably a hexagonal arrangement of typically rhombohedral DNA tensegrity triangles that forms through non‐canonical sticky end interactions. Here, we find a series of mechanisms to program a hexagonal arrangement using: the sticky end sequence; triangle edge torsional stress; and crystallization condition. We showcase cross‐talking between Watson–Crick and non‐canonical sticky ends in which the ratio between the two dictates segregation by crystal forms or combination into composite crystals. Finally, we develop a method for reconfiguring the long‐range geometry of formed crystals from rhombohedral to hexagonal and vice versa. These data demonstrate fine control over non‐canonical motifs and their topological self‐assembly. This will vastly increase the programmability, functionality, and versatility of rationally designed DNA constructs.more » « less
An official website of the United States government
