skip to main content


Title: First Responders’ Spatial Working Memory of Large-Scale Buildings: Implications of Information Format
In emergency events, first responders often have to build an accurate spatial working memory of unfamiliar spaces in a short time period. This study investigates the impact of information format on first responders’ short-term spatial memory of large-scale spaces via a human-subject experiment (n=63). A virtual model was created to simulate a real building on Texas A&M University campus. A total of 28 building components were modified in the virtual model. Participants were asked to review the virtual model with one of the three methods: 2D drawing, 3D model, and VR model. After the review session, the participants were sent to the real building to identify the discrepancies, and accuracy was documented as the performance measure. The results reveal that the 3D and VR groups both significantly outperformed the 2D group in spatial working memory. This study sets the foundation to further understand how instructional information affects the performance of first responders in emergency response.  more » « less
Award ID(s):
1937878
NSF-PAR ID:
10152104
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASCE International Conference on Computing in Civil Engineering 2019
Page Range / eLocation ID:
154 to 161
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Owing to the increasing dynamics and complexity of construction tasks, workers often need to memorize a big amount of engineering information prior to the operations, such as spatial orientations and operational procedures. The working memory development, as a result, is critical to the performance and safety of many construction tasks. This study investigates how the format of engineering information affects human working memory based on a human-subject Virtual Reality (VR) experiment (n=90). A VR model was created to simulate a pipe maintenance task. First, participants were asked to review the task procedures in one of the following formats, including 2D isometric drawings, 3D model, and VR model. After the review session, participants were asked to perform the pipe maintenance task in the virtual environment based on their working memory. The operation accuracy and time were used as the key performance indicators of the working memory development. The experiment results indicate that the 3D and VR groups outperformed the 2D group in both operation accuracy and time, suggesting that a more immersive instruction leads to a better working memory. A further examination finds that the 2D group presented a significantly higher level of intrinsic cognitive load and extraneous cognitive load in the working memory development compared to the 3D and VR groups, indicating that different engineering information formats can cause different levels of cognitive load in working memory development, and ultimately affect the final performance. The findings are expected to inspire the design of intelligent information systems that adapt to the cognitive load of construction workers for improved working memory development. 
    more » « less
  2. Owing to the increasing complexity of construction tasks and operations performed in confined workplaces, workers rely progressively on working memory, i.e., the short-term and temporary storage of information pertaining to near future events, to ensure the seamless execution of construction tasks. Although literature has discovered a strong relationship between engineering information formats and the quality of working memory, there is still a clear theoretical disagreement on the implications of the complexity of engineering information in the development of working memory. This study addresses the knowledge gap with a human-subject experiment (n=60). Participants were required to review one of the two instructions for a pipe maintenance task: a simple 2D isometric drawing with bulletins (2D-simple) and a complex 2D isometric drawing with rich text (2D-complex). After the review session, the participants were asked to perform the pipe maintenance task in a Virtual Reality (VR) environment. Collected data include participants’ task performance (accuracy and time), pupillary dilations and gaze movements. The results show that the 2D-simple group outperformed the 2D-complex group in terms of both accuracy and time. An attention pattern analysis using Approximate Entropy (ApEn) of gaze movements suggests that a higher ApEn in the vertical axis, i.e. a more irregular and complex gaze movement between instructions, may result in a more efficient use of working memory and thus contributes to a better performance. This study provides preliminary evidence regarding the impact of engineering information complexity on the working memory development of construction workers. 
    more » « less
  3. Emergency response in indoor building evacuation is essential for effective rescue and safety management. First responders often lack the situational awareness capability to quickly assess the layout of a building upon initial entry. For occupants of the building, situational awareness becomes more important in cases of active shooter events or circumstances of fire and smoke. One of the challenges is to provide user-specific personalized evacuation routes in real-time. In multilevel building environments, the complexity of the architecture creates problems for both visual and mental representation of the 3D spaces. This paper presents three cutting edge Augmented Reality Instructional (ARI) modules that overcome the visual limitations associated with the traditional, static 2D methods of communicating evacuation plans for multilevel buildings. Using existing building features, the authors demonstrate how the three modules provide contextualized 3D visualizations that promote and support spatial knowledge acquisition and cognitive mapping thereby enhancing situational awareness. These ARI visualizations are developed for first responders and building occupants to help increase emergency preparedness and mitigate the evacuation related risks in multilevel building rescues and safety management. Specifically, the paper describes the design and implementation of the ARI modules and reports the results of the pilot studies conducted to evaluate their perceived usefulness, ease-of-use, and usability. The results suggest the desirability of further heuristic examination of three-dimensional situational awareness-based ARI application effectiveness in multilevel building evacuations. 
    more » « less
  4. Modern buildings with increasing complexity can cause serious difficulties for first responders in emergency wayfinding. While real-time data collection and information analytics become easier in indoor wayfinding, a new challenge has arisen: cognitive overload due to information redundancy. Standardized and universal spatial information systems are still widely used in emergency wayfinding, ignoring first responders’ individual difference in information intake. This paper proposes and tests the theoretical framework of a spatial information systems for first responders, which reflects their individual difference in information preference and helps reduce the cognitive load in line of duty. The proposed method includes the use of Virtual Reality (VR) experiments to simulate real world buildings, and the modeling of first responders’ reactions to different information formats and contents in simulated wayfinding tasks. This work is expected to set a foundation of future spatial information system that correctly and effectively responds to first responders’ needs. 
    more » « less
  5. Human navigation simulation is critical to many civil engineering tasks and is of central interest to the simulation community. Most human navigation simulation approaches focus on the classic psychology evidence, or assumptions that still need further proofs. The overly simplified and generalized assumption of navigation behaviors does not highlight the need of capturing individual differences in spatial cognition and navigation decision-making, or the impacts of diverse ways of spatial information display. This study proposes the visual attention patterns in floorplan review to be a stronger predictor of human navigation behaviors. To set the theoretical foundation, a Virtual Reality (VR) experiment was performed to test if visual attention patterns during spatial information review can predict the quality of spatial memory, and how the relationship is affected by the diverse ways of information display, including 2D, 3D and VR. The results set a basis for future prediction model developments. 
    more » « less