skip to main content


Title: Radiative Influence of Horizontally Oriented Ice Crystals over Summit, Greenland
Abstract

Ice crystals commonly adopt a horizontal orientation under certain aerodynamic and electrodynamic conditions that occur in the atmosphere. While the radiative impact of horizontally oriented ice crystals (HOIC) has been theoretically studied with respect to their impact on shortwave cloud albedo, the longwave impact remains unexplored. This work analyzes the occurrence of HOIC at Summit, Greenland, from July 2015 to June 2017. Using polarization lidar and ancillary atmospheric sensors, ice crystal orientations are identified and used to interpret cloud radiative impact on the surface radiation budget. We find HOIC occur in at least 25.6% of all ice‐only column observations. We find that the shortwave impact of HOIC is to increase cloud radiative effect by approximately 22% for a given solar zenith angle. We also find that the longwave impact of HOIC compared to randomly oriented ice crystals are statistically different at the p < 0.01 significance level, increasing the surface radiative effect by approximately 8% for clouds with infrared optical depths < ~1. We suggest that the observed difference between the surface radiative effect for clouds containing randomly oriented ice crystals and HOIC may be due to enhanced scattering, but this hypothesis needs to be further explored with more detailed observations and modeling.

 
more » « less
Award ID(s):
1801477 1314156 1303879 1303864 1414314
NSF-PAR ID:
10455476
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
124
Issue:
22
ISSN:
2169-897X
Page Range / eLocation ID:
p. 12141-12156
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Satellite observations of tropical maritime convection indicate an afternoon maximum in anvil cloud fraction that cannot be explained by the diurnal cycle of deep convection peaking at night. We use idealized cloud-resolving model simulations of single anvil cloud evolution pathways, initialized at different times of the day, to show that tropical anvil clouds formed during the day are more widespread and longer lasting than those formed at night. This diurnal difference is caused by shortwave radiative heating, which lofts and spreads anvil clouds via a mesoscale circulation that is largely absent at night, when a different, longwave-driven circulation dominates. The nighttime circulation entrains dry environmental air that erodes cloud top and shortens anvil lifetime. Increased ice nucleation in more turbulent nighttime conditions supported by the longwave cloud-top cooling and cloud-base heating dipole cannot compensate for the effect of diurnal shortwave radiative heating. Radiative–convective equilibrium simulations with a realistic diurnal cycle of insolation confirm the crucial role of shortwave heating in lofting and sustaining anvil clouds. The shortwave-driven mesoscale ascent leads to daytime anvils with larger ice crystal size, number concentration, and water content at cloud top than their nighttime counterparts. Significance Statement Deep convective activity and rainfall peak at night over the tropical oceans. However, anvil clouds that originate from the tops of deep convective clouds reach their largest extent in the afternoon hours. We study the underlying physical mechanisms that lead to this discrepancy by simulating the evolution of anvil clouds with a high-resolution model. We find that the absorption of sunlight by ice crystals lofts and spreads the daytime anvil clouds over a larger area, increasing their lifetime, changing their properties, and thus influencing their impact on climate. Our findings show that it is important not only to simulate the correct onset of deep convection but also to correctly represent anvil cloud evolution for skillful simulations of the tropical energy balance. 
    more » « less
  2. Accurate multidecadal radiative flux records are vital to understand Arctic amplification and constrain climate model uncertainties. Uncertainty in the NASA Clouds and the Earth’s Radiant Energy System (CERES)-derived irradiances is larger over sea ice than any other surface type and comes from several sources. The year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic provides a rare opportunity to explore uncertainty in CERES-derived radiative fluxes. First, a systematic and statistically robust assessment of surface shortwave and longwave fluxes was conducted using in situ measurements from MOSAiC flux stations. The CERES Synoptic 1degree (SYN1deg) product overestimates the downwelling shortwave flux by +11.40 Wm–2 and underestimates the upwelling shortwave flux by –15.70 Wm–2 and downwelling longwave fluxes by –12.58 Wm–2 at the surface during summer. In addition, large differences are found in the upwelling longwave flux when the surface approaches the melting point (approximately 0°C). The biases in downwelling shortwave and longwave fluxes suggest that the atmosphere represented in CERES is too optically thin. The large negative bias in upwelling shortwave flux can be attributed in large part to lower surface albedo (–0.15) in satellite footprint relative to surface sensors. Additionally, the results show that the spectral surface albedo used in SYN1deg overestimates albedo in visible and mid-infrared bands. A series of radiative transfer model perturbation experiments are performed to quantify the factors contributing to the differences. The CERES-MOSAiC broadband albedo differences (approximately 20 Wm–2) explain a larger portion of the upwelling shortwave flux difference than the spectral albedo shape differences (approximately 3 Wm–2). In addition, the differences between perturbation experiments using hourly and monthly MOSAiC surface albedo suggest that approximately 25% of the sea ice surface albedo variability is explained by factors not correlated with daily sea ice concentration variability. Biases in net shortwave and longwave flux can be reduced to less than half by adjusting both albedo and cloud inputs toward observed values. The results indicate that improvements in the surface albedo and cloud data would substantially reduce the uncertainty in the Arctic surface radiation budget derived from CERES data products. 
    more » « less
  3. Abstract

    In clouds containing both liquid and ice with temperatures between −3°C and −8°C, liquid droplets collide with large ice crystals, freeze, and shatter, producing a plethora of small ice splinters. This process, known as Hallett‐Mossop rime splintering, and other forms of secondary ice production, can cause clouds to reflect less sunlight and to have shorter lifetimes. We show its impact on Southern Ocean shallow cumuli using a novel suite of five global storm‐resolving simulations, which partition the Earth's atmosphere into 2–4 km wide columns. We evaluate simulated clouds and radiation over the Southern Ocean with aircraft observations from the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES), and satellite observations from Clouds and the Earth's Radiant Energy System (CERES) and Himawari. Simulations with large concentrations of ice crystals in boundary layer clouds, which agree better with SOCRATES observations, have reduced mixed‐phase cumulus cloud cover and weaker shortwave cloud radiative effects (CREs) that are less biased compared with CERES. Using a pair of simulations differing only in their treatment of Hallett‐Mossop rime splintering, we show that including this process increases ice crystal concentrations in cumulus clouds and weakens shortwave CREs over the Southern Ocean by 10 W m−2. We also demonstrate the key role that global storm‐resolving models can play in detangling the effects of clouds on Earth's climate across scales, making it possible to trace the impact of changes in individual cumulus cloud anvils (10 km2) on the radiative budget of the massive Southern Ocean basin (107 km2).

     
    more » « less
  4. Abstract

    In the tropics, the absorbed solar radiation is larger than the outgoing longwave radiation, while the opposite is true at high latitudes. This basic fact implies a poleward energy transport (PET) in both hemispheres, which is accomplished by the atmosphere and oceans. The magnitude of PET is determined by the top of atmosphere gradient in the net radiation flux, and small changes to this quantity must change the total PET in the absence of changes in heat uptake. We analyze a large ensemble of 50 historic climate simulations from the CESM LENS2 project and find a significant PET anomaly in the latter half of the twentieth century. The temporal evolution of this anomaly—with a rapid increase after 1950, a peak near 1975, and a rapid decrease in the 1990s—mirrors the historic trend of sulfur dioxide (SO2, a significant aerosol predecessor) emissions from Europe and North America. This anomaly also appears in an analysis of the PET calculated from ERA5 reanalyses and from the CESM2 Single Forcing Large Ensemble. Consistent with previous studies, we find that historic SO2emissions from Europe and North America brightened clouds, which reflected additional solar radiation back to space in the midlatitudes: this shortwave anomaly increased the meridional gradient in the net TOA radiation flux and induced an anomalous northward energy transport. Finally, our results suggest that cryosphere processes become an additional important factor in setting the PET anomaly during the first years of the twenty-first century by contributing to the difference in absorbed solar radiation between hemispheres alongside cloud radiative effects.

    significance statement

    In this study, we analyze a large group of climate model simulations from 1850 to 2014 and find that this historical pollution changed the way that heat was transported from the tropics to Earth’s poles. We also find this change in heat transport when we analyzed an atmospheric reanalysis, which is a historical dataset that combines many meteorological observations into a best estimate of the past climate state. This extra reflection of sunlight from polluted clouds cooled the Northern Hemisphere, and we hypothesize that this cooling caused more heat transport out of the tropics. Last, we find that similar pollution emitted from China and India in more recent decades has not led to a change in Earth’s heat transport because of counteracting changes in snow and ice in the Northern Hemisphere.

     
    more » « less
  5. Abstract

    The West Antarctic climate is under the combined impact of synoptic and regional drivers. Regional factors have contributed to more frequent surface melting with a similar pattern recently, which accelerates ice loss and favors global sea‐level rise. Part I of this research identified and quantified the two leading drivers of Ross Ice Shelf (RIS) melting, viz. foehn effect and direct marine air advection, based on Polar WRF (PWRF) simulations. In this article (Part II), the impact of clouds and the pattern of surface energy balance (SEB) during melting are analyzed, as well as the relationship among these three factors. In general, net shortwave radiation dominates the surface melting with a daily mean value above 100 W·m−2. Foehn clearance and decreasing surface albedo respectively increase the downward shortwave radiation and increase the absorbed shortwave radiation, significantly contributing to surface melting in areas such as western Marie Byrd Land. Also, extensive downward longwave radiation caused by low‐level liquid cloud favors the melting expansion over the middle and coastal RIS. With significant moisture transport occurring over more than 40% of the time during the melting period, the impact from net radiation can be amplified. Moreover, frequent foehn cases can enhance the turbulent mixing on the leeside. With a Froude number (Fr) around 1 or slightly larger, fast downdrafts or reversed wind flows can let the warm foehn air penetrate down to the surface with up to 20 W·m−2in sensible heat flux transfer to the ground. However, when the Froude number is close to infinity with breaking waves on the leeside, the contribution of turbulence to the surface warming is reduced. With better understanding of the regional factors for the surface melting, prediction of the future stability of West Antarctic ice shelves can be improved.

     
    more » « less